

PREVENTING USER AND HARDWARE TRACKING IN MOBILE DEVICES

by

David Robert Stites

B.S., Purdue University, 2007

A thesis submitted to the Graduate Faculty of the University of Colorado at Colorado

Springs in partial fulfillment of the requirements for the degree of Master of Science

Department of Computer Science

2012

© Copyright By David Robert Stites 2012
All Rights Reserved

ii

This thesis for the Master of Science degree by

David Robert Stites

has been approved for the

Department of Computer Science

by

Rory Lewis, Chair

Xiaobo Zhou

Chuan Yue

Mark Wickert

Date

iii

Stites, David Robert (M.S., Computer Science)

Preventing User and Hardware Tracking in Mobile Devices

Thesis directed by Professor Rory Lewis

 Mobile devices, such as smartphones or PDAs, have become increasingly popular

with consumers and often provide essential functionality in their everyday life. Usually

these mobile devices contain a great deal of sensitive information such as addresses,

contacts, ingoing/outgoing call logs, SMS messages and, on the latest models, a calendar,

emails and potentially the user’s current location. A smartphone or mobile device today

can be as powerful as a desktop or laptop in some respects and, while the latest models

feature a complete OS, for many users these devices are “just phones” so there is an

underestimation of the risk connected to mobile device privacy. There is a currently

existing privacy problem associated with user and hardware tracking in mobile devices.

Users can be tracked without their knowledge and consent and have rich profiles built

about them using their hardware interface address regarding their location and

preferences. This information can be potentially cross correlated to other existing

datasets to build advertising profiles for these users. The mitigation to this problem using

a framework to support randomly generated, disposable hardware addresses.

iv

Dedication

 I dedicate this thesis work to my tireless parents, Richard and Jane Stites, my

sister Amy Stites and my loving wife, Rachel Stites. Without their knowledge, wisdom,

guidance and support, I wouldn’t have been able to reach my dreams! All of you have

been my best friends and cheerleaders - I love you all.

v

Acknowledgement

 I wish to express my sincere thanks to Dr. Rory Lewis for his encouragement

throughout this work.

 I wish to express my sincere thanks and gratitude to Dr. Chuan Yue for instilling

an interest in privacy and security in me.

 I would also like to express gratitude to my previous employers, Gene and Jamie

Johnston, for believing in the power of education.

 I wish to thank Erik Neuenschwander for guiding me through the corporate

approval process so that this work could take place.

 I would like to express a sincere thanks to Nathan Stern, Michelle Moore, Josh

Rose and Ed Hunnicutt for volunteering to help me collect data sets for this work.

vi

TABLE OF CONTENTS

INTRODUCTION
..
xvi

Purpose of the Study xviii

Arrangement of the Thesis & Scope of the Study xxi

PREVIOUS AND RELATED WORK
..
xxiii

Thesis-specific related work xxiii

General mobile device privacy related work xxv

PRIVACY BACKGROUND INFORMATION
..
xxviii

Types of Confidentiality Breaches xxviii

Transparency xxix

Consent xxxiii

.Data mishandling xxxix

Severity Levels of Confidentiality Breaches xl

Potential Explanations for an Increase in Privacy Violations and Attacks xli

Increased computing power and storage capabilities xli

Increased network connectivity xlii

Standardization of operating systems and interfaces xliii

vii

Enterprise integration xliv

Other reasons, social engineering and hacktivism xliv

Privacy by Design xliv

THE OSI MODEL
..
xlvii

OSI Layer 1: Physical xlix

Establishing physical transmission mediums xlix

Topology xlix

Hardware specifications l

Encoding and decoding data l

OSI Layer 2: Data link l

.Addressing l

Media access control li

.Error handling li

Frame synchronization li

OSI Layer 3: Network lii

Provision of logical addressing services lii

Routing services lii

Fragmentation and reassembly liii

.Error handling liii

OSI Layer 4: Transport liii

Connection-oriented communication liv

Reliability liv

viii

Flow and congestion control lv

In-order delivery lv

.Multiplexing lv

OSI Layer 5: Session lvi

OSI Layer 6: Presentation lvi

OSI Layer 7: Application lvii

HARDWARE INTERFACE ADDRESSES
..
lix

IEEE 802.11 WIRELESS
..
lxiii

802.11 Background Information lxiii

Basic 802.11 Operation lxiv

.Scanning lxiv

Synchronization lxv

Authentication lxv

Association lxvi

Wireless Security and Potential Risks of Wireless Networks lxvii

IEEE 802.11 Operation Modes lxviii

Infrastructure mode lxviii

.Ad hoc mode lxix

Wireless Radio Headers lxx

Radiotap lxxii

IEEE 802.11 LAN Management lxxvi

ix

Beacon frame lxxvi

.Probe request frame lxxvii

Probe response frame lxxvii

Other frame types lxxvii

A SOLUTION TO USER TRACKING: DISPOSABLE HARDWARE ADDRESSES
..
lxxx

Application and User Interface lxxxiv

Frameworks lxxxv

Operating System lxxxvii

Hardware Address Collisions xc

Checking Addresses & Handling Address Collisions xcv

Drivers xcvii

TESTING
..
c

RESULTS FROM TESTING
..
ciii

CONCLUSIONS
..
cvi

REFERENCES
..
cviii

APPENDIX A: HARVESTED CODE
..
cxv

x

APPENDIX B: DISCOVERED SSIDS (PARTIAL LISTING)
..
cxxxii

xi

TABLES

Table

1. Probability of collisions using 24 random bits..................................93

2. Probability of collisions using 47 random bits..................................94

3. Unique addresses and SSIDs collected during testing....................103

xii

FIGURES

Figure

1. Location services disclosure icon in Apple iOS operating system....28

2. Location privacy settings in Apple iOS operating system................31

3. Location privacy settings in Apple OS X operating system..............32

4. Location access consent dialog in Apple iOS operating system.......34

5. Location access consent dialog in Apple OS X operating system.....34

6. Location and security settings in the Android operating system.......35

7. Diagnostic and usage settings in Apple OS X operating system.......36

8. ISO OSI network model..48

9. iOS Network Preferences User Interface..61

10. OS X Network Preferences User Interface..62

11. Hardware address diagram..62

12. IEEE 802.11 state machine..67

13. Example packet capture with a radiotap header using Wireshark.....75

14. Normal IEEE 802.11 probe request and response.............................78

15. Privacy conserving IEEE 802.11 probe request and response..........83

16. Software layers in an operating system...84

17. User interface implementation of privacy mode...............................85

18. Diagram of software layers in proposed solution..............................87

19. Hidden node problem..96

20. Raspberry Pi single-board computer...101

xiii

EQUATIONS

Equation

1. Protocol overhead..71

2. Protocol efficiency...71

3. Probability of a collision of randomly generated addresses over
time..104

xiv

CODE LISTINGS

Code Listing

1. Log file entry with poor user privacy..37

2. Log file entry with improved user privacy..37

3. Log file entry with best user privacy...38

4. C code to modify a network interface’s promiscuous mode setting..70

5. Radiotap header struct...72

6. Radiotap data field bitmask...73

7. C code to generate random hardware addresses................................88

8. C code to set random hardware addresses...99

xv

CHAPTER 1

INTRODUCTION

 Mobile devices, especially cell phones, have changed a great deal from their

predecessors from the 1990s. Gone are the days of brick-sized phones with a 1-line

displays, 10 analog buttons and several kilobytes of memory. In recent years there has

been an explosion [Bickford] of powerful mobile computing devices. These new smart

phones and tablets, small enough to fit in your pocket or backpack, hold an immense

amount of computing power. Information is available at a simple touch or finger flick

and many users use these devices to access a plethora of data or services such as email,

personal contacts and websites (including financial account portals) and even perform

tasks which formerly were normally reserved for a desktop system such as video

conferencing, watching movies or listening to music.

 These devices are able to access the internet, download additional software from

the internet, send and receive email, browse websites and send and receive SMS

messages from other users. In addition to these capabilities, many subscribers use their

cell phone as a primary method of communication, storing their personal contacts

information (which include street addresses, email addresses, phone numbers, etc.) as

well as photographs they have taken. Many of these devices have a built-in GPS that

allows the user to “geo-tag” photographs and use Location Based Services, such as

FourSquare, Twitter and Facebook in addition to a basic mapping and GPS functionality.

Also, the majority of the mobile platforms have “wallet” applications which allow users

to store a wide variety of information such as credit card numbers, bank accounts, serial

numbers, web credentials, social identities and personal information. While most of the

these applications encrypt the contents of the wallet, some of them do not and store the

information in plaintext.

 Devices that run iOS (iPhone, iPad and iPod Touch), Android and Windows

Mobile (which represent the majority of the market) present a brand new computing

paradigm in terms of availability, user interface and privacy. These devices are being

targeted by attackers as never before [Hypponen]. Today, more than 300 kinds of

malware - among them worms, Trojan horses and other viruses as well as spyware - have

been unleashed against the devices [Hypponen]. In addition to malevolent code that

executes on the device, attackers can setup “IMSI catchers”, which is a device that can

act as a false cell tower. This device enables Man-in-the-Middle (MITM) attacks and can

be used for eavesdropping and interception of cellular traffic. Although desktop systems

still remain the most widely targeted platform, as mobile computing becomes more

ubiquitous and powerful, the lines between the functionality of a traditional desktop

system and a mobile system will become blurred and each of these more than 1 billion

devices will gradually enter the virtual battlefield.

17

Purpose of the Study

 Clearly, these new mobile device capabilities, mixed with the fact that users store

personal information on the devices, make mobile devices a prime target for attackers and

others who would compromise privacy, who may not necessarily be bad actors. There

are three different, basic categories of attacks that can be carried out against mobile

devices which are:

Confidentiality attacks: Data theft and data harvesting [Seriot]

Integrity attacks: Phone hijacking [Bickford]

Availability attacks: Protocol based denial-of-service (DoS) attacks carried out

against mobile devices and the infrastructure that serves them, and battery

draining attacks [Hypponen]

 These three categories represent a wide spectrum of security issues and

demonstrate that there are many different attacks that an attacker could carry out. Any of

the aforementioned attacks could range in severity from “low” to “high” which makes

these particular vulnerabilities a significant, under-appreciated problem. Attacks or

compromises to privacy fall under the category of “Confidentiality attacks.”

 Additionally, the scope of the problems with mobile computing platforms are not

static. With the rise and increasing ubiquity of the mobile computing platform, new and

challenging issues are beginning to emerge. One example of these issues involves user

privacy. Many smart phone applications rely on the use of the user’s location so that they

18

can provide a useful service. [Yiu, Tan, Liu] Secure transport, computation and storage of

this data aside, there are additional privacy challenges with applications accessing and

using this data as the gathered information permits the tracking and logging of of

individuals’ whereabouts.

 To address these issues, many smart phone manufacturers have started building in

privacy controls to their operating system. For example, in Apple’s iOS 6, there are

application-specific privacy settings the user can set to allow or disallow access to

various sets of the user’s private data such as location, contacts, calendars, reminders and

photos. The sandboxed user-space application will call an API to request data access

permissions and the OS will check, out of process, to see if this application has been

previously allowed or disallowed by the user. If the user has disallowed access, no access

will be granted to the user-space application. If the user has previously allowed access,

full permissions will be granted to the user-space application. If the user has never been

prompted to grant or deny access, the OS will present a modal dialog, out of process,

prompting the user to decide whether or not an application should be granted access to

the user’s data.

 For example, an application running on prior versions of iOS has access to the

unique device ID (UDID). The UDID is a hexadecimal string that uniquely identifies a

particular device. This UDID is able to be seen by users but, previously, they had no way

to restrict its use or reset it. In [Egele], the authors surveyed more than 1,400

applications available on the Apple App Store and on Cydia and more than 50% of those

applications accessed and transmitted the UDID. In iOS 6, there are three new

19

application programming interfaces (APIs) for providing developers and advertising

networks a means for device identification without exposing any private or confidential

information about the user and giving the user positive control over these identifiers.

 However, while privacy controls are improving, they do not yet cover some

unique identifiers that might be used to track users. One class of such identifiers is the

hardware addresses of network interfaces, such as the WiFi MAC address. The author

believes these identifiers will increasingly be utilized to harvest data as platforms restrict

the use of other unique identifiers and, hence, restriction of the availability of this

information will become more relevant for protection of consumer privacy .

 The author proposes to reduce the privacy vulnerability associated with hardware

addresses via a generic framework which implements disposable addresses for network

interfaces on mobile devices. The ability to track mobile devices based on their hardware

is a pernicious problem. It is pernicious because tracking can be performed without the

user having to install any application (although applications can stealthily perform the

tracking in the background) and the user cannot prevent the tracking because:

1) the user has not given consent to track in the first place so the user does not know

the tracking is occurring, and;

2) since the hardware address is tied to the device, the only way to eliminate the

tracking is to get a new device, which is obviously not a scalable solution for the

user, partially because it is cost prohibitive.

20

Arrangement of the Thesis & Scope of the Study

 The arrangement and scope of the thesis is as follows:

Chapter 2, Previous and related work. This chapter examines work previously

performed that is similar to this work in terms of theoretical ideas. In addition,

this chapter also explores some previously-researched general privacy related

topics.

Chapter 3, Privacy background information. This chapter explores different types

of privacy and confidentiality breaches and their severities. This section also

examines potential causes of privacy and information leaks.

Chapter 4, The OSI model. This chapter describes the OSI model, and how it is an

integral piece in the proposed solution presented in this thesis.

Chapter 5, Hardware interface addresses. This chapter explains specific technical

information related to the hardware address and provides the foundation for

understanding the proposed solution in this thesis.

Chapter 6, IEEE 802.11 wireless. This chapter provides a fundamental working

knowledge of the IEEE 802.11 wireless protocol as well as several specifics

required to understand the proposed solution in this thesis, such as operation

modes and wireless radio headers.

21

Chapter 7, A solution to user tracking: Disposable hardware addresses. This

chapter provides the solution to the problem posed in Chapter 1 and 2 regarding

the use of the interface hardware address to track users.

Chapter 8, Testing. This chapter demonstrates the feasibility and ease of

performing user tracking in the real world through implementation of a wireless

radio sniffer on a single-board-computer.

Chapter 9, Testing results. This chapter analyzes the results of implementing and

testing the hypothesis from the Chapter 8.

Chapter 10, Conclusion.

There are several topics that are not within the scope of this work and they

include full descriptions of the OSI model, full descriptions of the IEEE 802.11

protocol, legal aspects related to privacy, RSSI triangulation, dataset cross-

correlation and various computer and network security topics. The author may

leverage previous work regarding these topics and will provide references to

additional materials where the reader may go for further information.

22

CHAPTER 2

PREVIOUS AND RELATED WORK

Thesis-specific related work

 There has been a significant amount of previous work done in the area of mobile

privacy. In particular, [Gruteser] bears the most similarity to this work. In [Gruteser], the

authors propose a solution to the problem where an adversary who controls several access

points would be able to triangulate a client’s position. In addition, similarly to this work,

the authors note that interface identifiers uniquely identify each client, allowing tracking

of location over time. They also proposes the same solution as this paper of enhancing

user privacy through frequent disposal of a client’s interface identifier. In some cases, the

authors address the same problems as this author.

! However, there are many differences between this work and [Gruteser]. In

[Gruteser], the authors are motivated to mitigate the privacy threat of being able to

uniquely identify and track a user’s location throughout a network. Their proposed

solution does not address passive information leaks as this work does even though their

work does address the ability to track users based on active use of a wireless network.

Additionally, [Gruteser] has a completely different, less-effective method of generating

random addresses (thus preventing address collisions) than this work. Moreover, a large

portion of the work in [Gruteser] was theoretical in nature and, therefore, a the “real-

world” application of their work was never realized. This work attempts to unite the

theoretical analysis with “real-world” applications. In [Gruteser], the authors address

integration with 802.1x, EAP-TLS and Radius, whereas this paper does not consider

these protocols. Additionally, all of the described scenarios in [Gruteser] are based on

active authentication, association and use of 802.11 wireless networks, while this work

mainly considers passive probing of 802.11 networks.

! A major enhancement of this work over the work of [Gruteser] is that the

frameworks proposed by this research will also apply to all applications running on the

system that could interrogate devices for their MAC address. To the application, this

solution will be transparent and not affect normal execution, however if applications,

advertising frameworks and tracking frameworks attempt to build off of or track interface

addresses, they will cease working properly. This framework will leverage the

application sandbox and application entitlements that are already available in Apple iOS,

but this is a general framework that could be adapted to any mobile platform.

! While this work draws many of the same conclusions as [Gruteser], it

simultaneously identifies and addresses several additional problems. The first additional

problem this work identifies is that it addresses the scenario of passive information leaks

while using mobile devices. It is not necessary to be authenticated, associated or actively

using a wireless network for tracking to be possible. In Chapters 7 and 8, it is

demonstrated that passive information leaks can be collected from users without their

knowledge and consent. The information collected can be processed and then used to

correlate hardware addresses to behavioral actions in the context of location. The most

common example of this is using the collected data to generate marketing strategies to be

24

used to market to individuals based on their interface address. The second addition this

work makes is that it takes the theoretical ideas presented in [Gruteser] and analyzes them

in a practical, “real-world” domain. Lastly, this work attempts to address some of the

theoretical issues that were omitted in [Gruteser].

! Another work that attempts to address some of the same issues as this work is

[Li]. Li attempt to demonstrate that “the network flux over the sensor network provides

fingerprint information about the mobile users within the field. Such information is

exoteric in the physical space and easy to access through passive sniffing.” They were

able to identify mobile users within the network and instantly track their movements

without breaking into the details of communicational packets.

! In [Pang], the authors demonstrated that “users can be tracked using implicit

identifiers, traffic characteristics that remain even when unique addresses and names are

removed. Although we found that our technique’s ability to identify users is not uniform

—some users do not display any characteristics that distinguish themselves from others—

most users can be accurately tracked. For example, the majority of users can be tracked

with 90% accuracy when active often enough in public networks with 100 concurrent

users or less. Some users can be tracked with even higher accuracy. Therefore,

pseudonyms are insufficient to provide location privacy for many users in 802.11

networks.”

! There are many other excellent works on location, privacy and mobile devices

including [Cooper, Tan, Lui, Yiu, Egele, Singelée, Lee, Kang, Zhang].

25

General mobile device privacy related work

! In [Schlegel], the authors demonstrated the ability to deploy “a Trojan with few

and innocuous permissions, that can extract a small amount of targeted private

information from the audio sensor of the phone. Using targeted profiles for context-aware

analysis, Soundcomber intelligently pulls out sensitive data such as credit card and PIN

numbers from both tone and speech-based interaction with phone menu systems.”

! In [Felt], the authors show that even though Android has an advanced permissions

system with a sandboxed execution environment, a “genuine application [can be]

exploited at runtime or a malicious application can escalate granted permissions and

imply that Android’s security model cannot deal with a transitive permission usage attack

and Android’s sandbox model fails as a last resort against malware and sophisticated

runtime attacks.”

 In [Seriot], the author illustrates that many of the attacks that occur on iOS have

to do with theft or procurement of personal or private information. For example, iOS

applications would have access to a user’s address book that includes phone numbers,

addresses and email addresses. Additionally, an application can also access other data

such as call history, carrier information and photographs.

 In [Bourimi], the authors presented a “privacy-respecting, indoor localization

approach allowing better identification of shoppers’ paths in stores.” The system they

created, Redpin, was designed to run on mobile devices. It consisted of two basic

components: “1) a sniffer component (SC) that gathers and collects information about

different wireless devices in range, in order to create a fingerprint, and (2) a locator

26

component (LC) that stores measured fingerprints in a shared repository and contains the

algorithm to locate a mobile device.” [Bourimi]

! In [Gansemer], the authors present an algorithm for “RSSI fingerprint positioning

based on Euclidean distance for the use in a priori existing larger and dynamically

changing WLAN infrastructure environments.” Similar to [Gansemer], in [Kitasuka],

they “describe the design and implementation of a prototype of a proposed positioning

system called WiPS. To improve the accuracy of relative location, WiPS uses RSSI

between terminals.”

 Hardware address tracking concerns have been the subject of comments in other

literature as well. For example, in [McCullagh], the author details concerns with a start

up company called Euclid Elements that records the location of millions of smartphones.

Euclid was launching a network that placed sensors in stores that passively detected Wi-

Fi MAC addresses and stored them for later use. Currently, Euclid’s model is an opt-out,

not opt-in, model. Similar concerns to [McCullagh] are expressed in [Ribeiro]. Some

companies, such as [Navizon], offer an indoor triangulation and positioning system using

similar technologies as Euclid and Google.

27

CHAPTER 3

PRIVACY BACKGROUND INFORMATION

 Broadly, user privacy violations deal with the exposing of confidential

information. While privacy is the subject of many statutes, court opinions and

regulations, for the purpose of this discussion, we will set aside the legal considerations

(however, to demonstrate an application of the tort of invasion of privacy, see, Lawlor v.

North American Corporation of Illinois, 2012 IL 112530 and the Restatement (Second) of

Torts §652B). Confidential information can take many forms, e.g., credit card numbers,

names and passwords, birthdays, IP addresses, fingerprints and voiceprints and online

purchase histories to list a few. All of this type of confidential information can be called

PII, or Personally Identifiable Information. PII is information that is uniquely identified

with a single person or can be integrated with other information to uniquely identify a

single individual.

Types of Confidentiality Breaches

 It is useful in impact analysis to categorize user privacy violations that occur by

one (or more) of four categories. For example, it can help the analysis to assign a CWE

(Common Weakness Enumeration) to a privacy violation. The [CWE] provides a

common language of discourse for discussing, finding and dealing with the causes of

software security vulnerabilities as they are found in code, design, or system architecture.

Transparency

 This category refers to the idea that a user should be notified when some process

is accessing user data that might be considered sensitive. There should be an openness

and honesty to the whole transaction. Ideally, this would be enforced at an operating

system level so that all processes that wish to access user PII must go through a system

API that would notify the user and notification could not be circumvented.

 An example of this notification schema is present in Apple’s iOS. When an

application accesses the user’s location data, the user is notified by placement of a small

triangle icon in the status bar at the top of the device. This icon is present for as long as

the process is active and alerts the user that the particular application is actively accessing

the user’s location data (see Figure 1). In addition, the user can determine, in “Settings”

for iOS, which application(s) is/are currently accessing the user’s location and which

application(s) has/have accessed the user’s location in the last 24 hours (see Figure 2).

Figure 3 shows what applications have accessed the users location in OS X.

Figure 1: Location services disclosure icon in Apple iOS operating system

29

 Typically, transparency can be summarized by considering user expectations -

“what would the user expect in this situation.” When there is a lack of transparency, user

reaction frequently includes surprise, fear and anger that the user’s private information

was accessed by a process without informing the user that the privacy invasion was

occurring. Users are frequently and understandably worried that their information could

be used for purposes other than the intended purpose of the application or that the

information would not be properly safeguarded. Users also worry about additional

personal information being accessed in the future without their knowledge if their past

experience was that third party access was not disclosed.

30

Figure 2: Location privacy settings in Apple iOS operating system

31

Figure 3: Location privacy settings in Apple OS X operating system

 This “user distress” is demonstrated by the developmental history of the iOS

application Path. In February 2012, the Path application was discovered to be uploading

a user’s entire address book. The upload occurred for the purposes of improving the

quality of friend suggestions when the user used the “Add Friends” feature and to notify

the user when one of the user’s contacts joined Path. While the data was ultimately used

for legitimate purposes, there was a lack of transparency regarding what was happening

in the background of that process that caused controversy and a feeling of violation.

32

Consent

 Transparency goes hand in hand with the second category of consent. This

category refers to allowing the user to make an explicit choice of opting in or out of

allowing a particular process to access personal information. When a user has given

consent, the user is allowing access to that user’s personal data. The option of consent

is important and fundamentally fair because it gives the user a chance to give thoughtful

consideration about allowing access. It allows the user to weigh the pros and cons of

permitting access before allowing or denying access. The resulting “voluntary choice”

action of granting or denying access is then clear and unmistakable and permits the user

to weigh privacy concerns against potentially greater functionality. Again, ideally,

consent requirements would be enforced at an operating system level – all processes that

wished to access user data would have to go through a system API that would notify the

user and could not be circumvented.

 Once again, the Apple iOS provides an example of consensual choice. When an

application attempts to accesses the user’s location data, the user is notified with a modal

dialogue. The user then is free to make the user’s choice on whether to grant or deny the

application access to this information (see Figure 4). Figure 5 shows a consent dialogue

on OS X.

 One last important issue under the heading of consent should be the ability of the

user to change the user’s mind and revoke (or grant) consent at any time. For example,

suppose the user originally granted access to a photo application to use the user’s photo

library. If the user initially trusted the third party but then learned that the application

33

was abusing private information, the user might decide to revoke photo library access to

the application. A well- conceived operating system should provide for decisional

modification on the part of the user. In iOS, the user can turn consent on or off in

“Settings” (see Figure 2). In Android, users can change the settings to determine whether

or not applications can access the user’s current location (see Figure 6).

Figure 4: Location access consent dialog in Apple iOS operating system

Figure 5: Location access consent dialog in Apple OS X operating system

34

Figure 6: Location and security settings in the Android operating system

Over-access and over-collection

 The third category of privacy violation is over-access/over-collection. This

category of analysis dictates that the application should only access or collect data that is

absolutely necessary to complete a task or provide functionality. While the user may

have consented to allowing access to their private data and it is transparent this access is

occurring, it is appropriate from a privacy perspective that the process only access

information that is absolutely necessary to the task at hand.

 For example, if the user grants a process access to the address book so that an

application can implement a “Friend Finder” feature based on registered email addresses,

35

it would be poor privacy technique to also permit access to superfluous information (e.g.,

phone numbers, addresses, etc.) that is also stored in the address book. The extra data

collected would not be necessary to fulfill the functionality of the application. Another

example would be the use and uploading of the exact coordinates of a user’s location

when a zip-code level accuracy would be sufficient to service the application. Figure 7

shows the “Diagnostics and Usage” feature in OS X that allows Apple to receive crash

and diagnostic information from users.

Figure 7: Diagnostic and usage settings in Apple OS X operating system

36

 Yet another example would be a logging facility that collects error conditions

from opted-in users. While the user has given consent to being included in the collection,

personal user data does not need to be logged in order for the engineering department to

fix application bugs. Consider the following three log samples:

 In Listing 1, we see an error log message that is referring to the process syncd

being unable to sync a photo on the network We are also able to learn some other

information such as the exact date and time of the failure, the full path to the photo and

the name of the wireless network the user is utilizing. A lot of this information is not

necessary to fix or debug the underlying error condition.

 In Listing 2, we see an “improved” log message. In this example, the full file path

was removed from the log message as well as the exact date and time being “fuzzed” to

the month, day and hour. Also, the username has been removed from the log message.

 In Listing 3, we see yet another “improved” log message over Listing 2. In this

version, the log message has been “fuzzed” to a day of the week as well as completely

10/7/12 11:55:57.814 AM com.foo.syncd: couldn't sync photo: “/Users/
jsmith/Photos/San Francisco Trip/IMG0234.jpg”, error: 4 no connection to
network “smith-ssid”, username jsmith.

Listing 1: Log file entry with poor user privacy

10/7 11 AM com.foo.syncd: couldn't sync photo: “IMG0234.jpg”, error: 4 no
connection to network “smith-ssid”.

Listing 2: Log file entry with improved user privacy

37

removing the filename and simply indicating the file type. Lastly, the log message does

not include the network SSID.

 In each of the last two examples of extracted information, the amount of

information collected was reduced so that only the more essential information necessary

to debug the problem remained. Additional ways to help reduce information collection to

essential information include: 1) anonymization, 2) aggregation, 3) de-resolving, 4)

minimization, and 5) decay of the information. Additional downsides to over-access/

over-collection include:

Additional cost for security measures to store data securely.

Additional cost for hard disk space to store the data.

Additional cost for staffing to administer these systems.

Additional cost of potentially needing to audit the data and developing retention

plans for the data.

Additional cost of potentially responding to law enforcement or regulatory body

requests for that data which, if not collected, cannot be subpoenaed.

Additional cost in having to parse out the relevant data from the irrelevant.

Sunday com.foo.syncd: couldn't sync photo, filetype: JPEG, error: 4 no
connection to network.

Listing 3: Log file entry with best user privacy

38

Data mishandling

 The last category of privacy invasion is data mishandling. If a user has given

consent to an application to access private information, while the application is

transparent in what it is doing and accessing the minimum amount of data needed to

complete its function, there is still the need for data security to ensure the safe transport

and storage of the acquired data. All of the techniques above are wasted effort if private

information is transmitted in the clear such that any attacker could intercept it.

 A common method of securing the data is using encryption to secure the

connection between two hosts. For example, when shopping online at Amazon.com, user

data is encrypted with RSA encryption. While a full treatment of encryption is outside

the scope of this work, there are some excellent resources relative to encryption such as

[Anderson, Schneier, Bishop]. Encryption, and proper access controls, should also be

used to secure the data at rest on the hard disk to prevent unauthorized parties from

utilizing inappropriately accessed data or preventing access to the data in the first place.

 However, encryption alone may not be enough to protect sensitive data. Consider

the example of a corporate network that proxies all internal users’ network connections.

While the data is encrypted from the user’s terminal to the proxy and from the proxy to

the web host, the corporation could still invade the user’s privacy as it holds the

encryption keys for the proxy (this example pertaining to data to which the corporation

does not have ownership rights).

39

 An additional protection that could be used would be hashing PII. Consider

again, the Path application example. Suppose that the application gained the user’s

consent to upload the user’s address book. Before uploading the data, the application

could hash the email addresses and phone numbers to further protect the sensitive

information. This hashing technique would be improved by using some known salt. In

cryptography, a salt value is a random number that is XORd with the key or password to

harden the security measure from being cracked.

Severity Levels of Confidentiality Breaches

 For classification reasons, the author has created several different levels of

potential confidentiality breaches involving PII. This allows the author and other

researchers to assign a logical classification documenting the seriousness of a particular

breach. The seriousness of the vulnerability, in conjunction with the CWE classification,

helps define whether or not the vulnerability is important enough fix and on what

timeline. For example, a vulnerability that permits identity theft should be classified as a

“high” level and should be fixed immediately. The confidentiality breach levels are

defined as follows:

None: Having resulted in no exposure of confidential information.

Low: Having resulted in exposure of confidential information that could not

directly be easily tied to the user, e.g., device IDs that could be used to track

users .

40

Medium: Having resulted in exposure of confidential information that is

potentially harmful or would constitute harmful PII if integrated with other

information.

 High: Having resulted in exposure of extremely confidential information and

harmfully reveals PII.

Potential Explanations for an Increase in
Privacy Violations and Attacks

 There are a number of reasons [Stites, Felt, F-Secure] that the community is

experiencing an increase in privacy and confidentiality breaches,which include the

following.

Increased computing power and storage capabilities

 While many consumers may not recognize mobile devices as being equivalent in

power to their larger counterparts (laptops and desktop PCs) due to their size, many

smartphones, tablet devices and other PDA type devices have a rich set of hardware

interfaces. Many smart phones, such as iPhones and Android-based phones, have

powerful dual-core processors and a large amount of storage space to accommodate

music, movies, documents and other types of media that can be consumed “on the go.”

 The available software applications that come pre-installed on the mobile device

by the device manufacturer, such as web browsers, email clients and messaging

applications, allow the user to much more readily interact with the physical and virtual

41

world than previous mobile devices. Furthermore, additional software applications can

be downloaded, installed from the Internet and run by the user. These third-party

applications are able to access the mobile device’s advanced hardware as well as GPS and

network interfaces (3G, WiFi and Bluetooth).

 This avalanche of mobile devices and their increasingly capable software provide

mobile malware and crimeware authors a much larger array of possibilities to carry out

their attacks. In addition, more sophisticated hardware and software possibly make it

easier for these attackers to “hide” their attack by ensuring that it only consumes a small

portion of the resources, thereby modeling a legitimate application.

Increased network connectivity

 There is a widespread availability of 802.11 WLANs and high-speed broadband

data access (3G, WiMAX) compared to only a few short years ago. These services allow

users to stay constantly connected to services such as email and messaging at home, at

work and in public places such as coffee shops. Many applications utilize network

connections to either request or send data and present additional vulnerability. For

example, a game application might transmit a user’s high score to a web server for

storage. Additionally, users are demanding that previously inaccessible data be opened

up to remote access and this forces providers of services to provide such access or lose

out to a competitor who does provide such access.

 There are many examples of the vulnerabilities introduced by increased network

connectivity. Many applications, such as the Amazon.com shopping application, rely on

42

the fact that the cell phone will have a network connection to receive and send data. A

more recent development is that many applications utilize location-based services, such

as Facebook, Twitter, and FourSquare. These applications provide additional

functionality if they are able to access the network and a user’s current location but do so

at the risk of putting more information where it could potentially fall into the wrong

hands. Lastly, many applications can make use of social data, such as the friends one

might have on Facebook. This Facebook data could be stored within the application.

While Facebook might maintain rigorous security standards on who and what can access

the user’s data, other third party applications might not be so careful with the user’s data.

Standardization of operating systems and interfaces

 The OS can be made consistent on any device in the same family of devices, so

malware applications would have more effect, being able to exploit the same security

vulnerability across many devices. Additional vulnerability may, surprisingly, be

unintentionally assisted by the device manufacturers themselves. Many manufacturers

give third party developers access to the system to write applications for the platform.

For example, one can freely download the Android and iOS SDK. Using this provided

SDK, those writing malware can craft a virus or some other piece of malware and then

submit it for inclusion in the appropriate application storefront. The “implied safety” of

the application being available in the storefront can provide users with a false sense of

security that the application is malware-free.

43

Enterprise integration

 Many mobile devices, such as Android, iOS and Blackberry, support standards

that permit integration into an enterprise environment. For example, many of these

devices have support for Virtual Private Networks (VPNs) as well as Exchange server

integration. Thieves and malware authors recognize that this integration will greatly

enhance the infection potential if a mobile virus, Trojan horse or worm is able to spread

from a mobile device to a corporate environment.

 Consider the case of an employee with a mobile device becoming infected while

at a coffee shop. The employee takes his infected device back to the corporate

environment where the it could spread that infection throughout the organization. Where

previously an attack might have only stolen information pertaining to the particular

victim’s mobile device, now the attacker could potentially obtain information associated

with many different people as well as corporate information.

Other reasons, social engineering and hacktivism

 The number of socially engineered attacks are becoming more prevalent and more

sophisticated. Use of malware to express displeasure or promote a group’s or individual’s

personal beliefs (“hacktivism”) represents an increasingly attractive method to some to

register protest. Hacktivism has become part of the mainstream in 2011 due to groups

such as Anonymous and LulzSec.”

44

Privacy by Design

 Since users are storing more personal information in their devices and the number

of privacy-related violations are increasing, a good way to mitigate potential privacy

issues is to design systems with privacy in mind. Too often, privacy is an after-thought of

developers. “Privacy by design” means that privacy and data protection are “embedded

through the entire life cycle of technologies, from the early design stage to their

deployment, use and ultimate disposal [European Commission].” This process can be

directly embedded into a software development lifecycle methodology. To support this

initiative, the United State Federal Trade Commission released a report detailing five

action items that a privacy by design framework should support:

Do Not Track: “The browser vendors have developed tools that consumers can

use to signal that they do not want to be tracked [FTC].”

Mobile: “The Commission calls on companies providing mobile services to work

toward improved privacy protections, including the development of short,

meaningful disclosures [FTC].”

Data Brokers: “To address the invisibility of, and consumers’ lack of control

over, data brokers’ collection and use of consumer information, the Commission

supports targeted legislation that would provide consumers with access to

information about them held by a data broker [FTC].”

45

Large Platform Providers: Exploring privacy and other issues related to

comprehensive tracking by large platforms, “such as Internet Service Providers,

operating systems, browsers, and social media seeking to comprehensively track

consumers’ online activities [FTC].”

Enforcing Self-Regulatory Codes: “The Department of Commerce, with the

support of key industry stakeholders, wants to undertake a project to facilitate

sector-specific codes of conduct and continue to enforce the FTC Act to take

action against companies that engage in unfair or deceptive practices [FTC].”

46

CHAPTER 4

THE OSI MODEL

 The OSI model is a standardized architecture for communications systems

described in abstract layers. In this model, similar communication functions are grouped

into logical layers. Each layer in the model works with the layer above it and below it to

incrementally prepare the data to be in a standardized format that permits transmission

(when sending data) or utilization (when receiving data) once all layers are traversed.

When an application sends data, the data progressively works down the stack from the

application layer to the physical layer and when data is received, it makes its way up the

stacked layers to the application. Data is touched by each layer – no layer is skipped.

Additionally, the ordering of these layers operating on the data is strict. There are 7

layers in the model (see Figure 8).

Presentation

Application

Transport

Session

Data link

Network

Physical

Figure 8: ISO OSI network model

 The privacy solution the author is proposing is concerned with the physical and

data link layer, however there would need to be coordinated support in higher layers,

such as in the application software (the application layer). While a full discussion of the

OSI model is outside the scope of this paper, the reader can easily find additional

authoritative resources describing and discussing the structure and implications of the

OSI model and networks in [Zimmerman, Day, Stallings, Leon-Garcia]. Because the

privacy solution proposed in this paper frequently depends upon implementation at the

most basic levels of the OSI model in order to improve the possibility that privacy issues

will not be ignored, a review of the capabilities of each layer is in order.

48

OSI Layer 1: Physical

 Layer 1, the physical layer, is the lowest layer in the OSI model and represents the

carrier of the signals. This layer provides several key pieces of functionality:

Establishing physical transmission mediums

 This is the most basic of the physical layer requirements. There must be some

form of transmission medium for the analog signal to propagate through from source to

destination. In IEEE 802.3 Ethernet, the physical layer would be twisted pair copper

wiring [IEEE Ethernet]. In IEEE 802.11a/b/g/n, the physical layer would be the

surrounding air [IEEE Wireless]. In both of these example, the transmitted data would

traverse this layer from the sender to reach its destination.

Topology

 Network topology refers to the arrangement of hosts on a network. This

arrangement can be physical or logical. In the case of physical topology, this refers to the

actual “real-world” placement of the network host. In the case of logical topology, this

refers to how data flows within a network, regardless of the network design or host

placement. While the physical distance between nodes can be feet, yards, miles or

hundreds of miles, this does not change the flow of data within the network. Other

factors such as the operating system, physical connections and other physical

considerations may differ, yet the topology of a network would remain the same [Leon-

49

Garcia, Stallings]. Examples of network topologies include bus, point-to-point, star, ring

and mesh [Leon-Garcia, Stallings].

Hardware specifications

 This aspect of the physical layer also specifies the technical functionality of

network connectors, terminators, network cables, radios and interface cards. This layer

also includes all the interconnection hardware used in the network, such as routers, hubs,

switches, etc.

Encoding and decoding data

 This component of the physical layer handles the conversion of data from digital

form to the corresponding analog signal that is transmitted over the communication

channel by the source host and the conversion back to digital form on the receiving host

end.

OSI Layer 2: Data link

 Layer 2, the data link layer, is served by the physical layer and serves the network

layer. This layer provides several pieces of functionality:

50

Addressing

 The data link layer contains the functionality of addressing. Each device on a

network has a single, unique identifier called the hardware address or MAC address.

This address is used by the data link protocols to ensure that data is received by the

intended machine properly. The hardware address is also plays a key role in this work

and will be discussed in more depth in the subsequent chapters.

Media access control

 Media access control functionality attempts to manage access to the shared

transmission medium. There are different algorithms and rules that govern this access

[Leon-Garcia, Stallings]. For example, on Ethernet, all hosts are connected through

wiring. If two hosts attempt to use the transmission at the same time, there will be a

conflict in access and data will be corrupted. [IEEE Ethernet] uses CSMA/CD (Carrier

sense, multiple access/collision detection) to avoid and recover from conflicts.

Error handling

 The data link layer will attempt to confirm data integrity, typically through the use

of a cyclic redundancy check (CRC). Depending on the recovery algorithm, it is

possible to recover from transmission errors with this functionality.

51

Frame synchronization

 Frame synchronization functionality arranges bits from the physical layer into

frames. A frame is a data packet. Typically, each frame begins with a preamble or start

sequence. A frame also contains a data payload and ends with a CRC that can be used to

check the integrity of the data transmitted. The frame allows for the layers to create a

logical unit of transmission.

 Some examples of layer 2 protocols would be 802.3 Ethernet, 802.11a/b/g/n

MAC/LLC, DOCSIS, PPP and Token Ring [Leon-Garcia, Stallings].

OSI Layer 3: Network

 The third layer, the network layer, is served by the data link layer and serves the

transport layer. This layer is mainly concerned with two functions: 1) defining how inter-

connected networks function and 2) providing the functionality of transferring data

between network nodes. To support these goals, the network layer has some specific

responsibilities:

Provision of logical addressing services

 Each host on a network needs a unique logical address to which data can be

delivered. While the link layer has addressing capabilities, those addresses refer to

physical devices, whereas the logical addresses in the network layer are hardware

52

independent and refer to nodes of the network. Internet Protocol (IP) is one such protocol

for addressing nodes.

Routing services

 Layer 3 also provides the ability to move data across inter-connected networks

and routing the data to the proper destination. To achieve this goal, the overall data

transmission is broken into discrete packets, each of which has a network layer header

that functions as an address, and the entire data transmission is then reassembled on the

receiving end when all packets sent are received at the address specified in the network

layer header.

Fragmentation and reassembly

 Different link layer protocols have different link layer frame sizes. For example,

a regular Ethernet frame has a maximum payload of 1,500 bytes [IEEE Ethernet]. Since

this layer provides service to the link layer, it must break down sequences of data into

chunks that will fit inside Ethernet link layer frames. This process of breaking down data

for transmission is called fragmentation. Conversely, when the data arrives at the

destination host, the link layer passes data to the network layer, which then has the

responsibility for reassembly.

53

Error handling

 There are protocols that allow hosts to determine the amenability of the recipient

to being contacted or the status of other hosts on the network as well as the ability to

handle errors in transmission.

OSI Layer 4: Transport

 The fourth layer, the transport layer, is served by the network layer and serves the

session layer. The transport layer “provides end-to-end communication services for

applications [Braden].” The transport layer provides arguably some of the most

important functionality in the OSI model, allowing multiple processes on the same host to

access the network in an efficient, reliable manner.

Connection-oriented communication

 Up until this layer, all of the models were connection-less, meaning they sent data

in the form of packets from one end point to another. This layer introduces the option of

having connection-oriented communication, meaning that the end points establish an

actual connection before transmitting any user data. This connection-oriented model

allows for the subsequent properties of this layer. An example transport protocol is TCP

(transmission control protocol) and UDP (user datagram protocol).

54

Reliability

 Since lower layers are connection-less, the delivery of packets was by best effort

up to this point. For example, it is possible that data may be corrupted during

transmission or lost during periods of high network congestion. This layer offers the

ability to add reliability or error correction to a connection-oriented protocol by allowing

endpoints to acknowledge receipt of data packets or request re-transmission of packets

that were not received or discarded due to bit errors.

Flow and congestion control

 Due to the fact that a network may be comprised of many different types of hosts,

there is a need to adapt the connection protocol to the host. For example, some hosts may

be machines that don’t have a lot of processing, memory or network bandwidth resources.

If one endpoint were to have an extremely high data transmission rate, then it might be

possible to overwhelm a slower receiving endpoint causing the data to overflow its

receiving buffer. This layer introduces the ability to add flow control such that a

receiving host can control the rate of transmission by the sending host. An example of a

congestion control algorithm is “slow-start” and one example is detailed in [Hung].

In-order delivery

 Network conditions can be unpredictable; for example, there can be a high

amount of congestion in some network segments and packets could take different paths

through a network to reach their destination. Due to the fact that none of the previous

55

layers guarantee in-order delivery (and it is generally a requirement for applications to

have in-order delivery), another function of the transport layer is to re-order the packets

for proper delivery. This is typically done through sequence numbers [Leon-Garcia,

Stallings].

Multiplexing

 The last major responsibility of the transport layer is to ensure that all processes

on a host have access to the network. Since computers are able to handle many different

processes at once, it is necessary to have an abstraction that will support each process

having access to the network at the same time. This is commonly achieved through an

abstraction such as defining a port or socket through which an application should send

and receive its data [Leon-Garcia, Stallings].

OSI Layer 5: Session

 The fifth layer in the OSI model is the session layer. This layer is served by the

transport layer, serves the presentation layer and “provides the control structure for

communication between applications; establishes, manages, and terminates connections

(sessions) between cooperating applications [Stallings].” This layer is necessary to

“organize and synchronize dialogue and to manage the exchange of data [Stallings].”

Some additional functionality that can be found in this layer supports authentication,

authorization and error recovery. In regard to error recovery, “[t]he session layer can

56

provide a checkpointing mechanism, so that if a failure of some sort occurs between

checkpoints, the session entity can retransmit all data since the last checkpoint

[Stallings].”

OSI Layer 6: Presentation

 The sixth layer in the OSI model is the presentation layer. This layer is served by

the session layer and serves the application layer. The presentation layer is mainly

responsible for “providing independence to the application processes from differences in

data representation [Stallings].” This permits for the network to accommodate a number

of different hosts all of whom can functionally utilize the network. For example, there

can be any number of different hosts on a network ranging from Windows PCs,

Macintoshes, and UNIX and Linux hosts. These systems all handle and represent data in

different ways and the presentation layer hides this complication and makes it appear as

the network is homogenous.

 This layer “defines the format of the data to be exchanged between applications

and offers application programs a set of data transformation services. The presentation

layer also defines the syntax used between application entities and provides for the

selection and subsequent modification of the representation used. Examples of specific

services that may be performed at this layer include data compression and encryption

[Stallings].”

57

OSI Layer 7: Application

 The last, highest layer in the OSI model is the layer that is closest to the user - the

application layer. “The application layer provides a means for application programs to

access the OSI environment. This layer contains management functions and generally

useful mechanisms that support distributed applications. In addition, general-purpose

applications such as file transfer, electronic mail, and terminal access to remote

computers are considered to reside at this layer [Stallings].” It is worth noting however,

that not all uses of the application layer come from applications; it is possible for the OS

to use the application layer as well.

58

CHAPTER 5

HARDWARE INTERFACE ADDRESSES

 The hardware address is a globally unique identifier that has the purpose of

uniquely identifying a network interface on a physical network segment such that inter-

device communications are routed to the correct device. Hardware addresses are used in

many networking standards, such as IEEE 802.3 (Ethernet), IEEE 802.11 wireless

networks, IEEE 802.5 (token ring), ATM, FDDI and Bluetooth. When one is referencing

the OSI model, a hardware address resides in layer 2.

 A network interface’s hardware address is typically burned into the hardware or is

stored in read-only firmware on the device. In the IEEE MAC-48 standard [IEEE

Wireless], the identifier is 6 bytes long (48-bits). The address is organized into octets,

where the first 3 bytes of the address are the OUI or the Organizationally Unique

Identifier. The OUI indicates what manufacturer “owns” that particular address space. A

full OUI list is available at [IEEE OUI].

 The last 3 bytes of the MAC-48 identifier are the network interface ID, that is

effectively a serial number or unique identifier within the OUI address space. The last 3

bytes may be assigned by the manufacturer in any way it desires, with the only constraint

being uniqueness. In theoretical total, this MAC-48 address space supports 248

(281,474,976,710,656) addresses. An example of a hardware address could be

FF:FF:FF:FF:FF:FF. In this particular example, this hardware address is the broadcast

address, since all the bits are 1.

 Hardware addresses can be divided into two categories: universally administered

and locally administered. This description indicates if the address is considered globally

unique and unchanged or if the settings were overridden locally and changed to a

different address, respectively. To indicate the category in which the address falls, the

“U/L bit” is set to 1 if the address is locally administered. By standard, the U/L bit is the

second-least significant bit of the most significant byte of the address (see Figure 11).

 During normal operation, network traffic is only delivered to a receiving device if

the hardware address in the data packet matches the hardware address of the receiving

device. Non-matching traffic is discarded unless the receiving device is in promiscuous

mode, described below.

 In TCP/IP networks, the hardware address of an interface can be queried if one

knows the IP address of a particular node. ARP, Address Resolution Protocol, translates

the IP address into a hardware address that uniquely identifies each node in a segment,

allowing frames to be delivered to the correct receiving device. In iOS, a user can see

their MAC address in Settings under General / About (see Figure 9). In OS X, a user can

see their MAC address in Preferences under Network / Advanced / Hardware (see Figure

10) or by using the ifconfig command. In Windows, the user may find this information

by using the ipconfig \all command in DOS.

60

Figure 9: iOS Network Preferences User Interface

61

Figure 10: OS X Network Preferences User Interface

Organizationally Unique Identifier Network Interface Controller

3 bytes3 bytes

6 bytesMost significant Least significant

6th byte

1st octet

1st byte

6th octet

Figure 11: Hardware address diagram

62

CHAPTER 6

IEEE 802.11 WIRELESS

802.11 Background Information

 IEEE 802.11 is the set of standards and specifications that governs and controls

development of wireless local area networks and wireless communication in the 2.4, 3.6

and 5 GHz frequency bands [IEEE Wireless]. These standards are controlled by the IEEE

LAN/MAN Standards Committee. The original 802.11 specification was published in

1997 [IEEE Wireless], however this standard is now obsolete. The current standard as of

this publication is 802.11-2012 and there are many amendments that have to do with

additional, add-on features. While a full, in-depth discussion of this standard is far

outside the scope of this work, one can refer to [IEEE Wireless, Leon-Garcia, Stallings]

for more information. This work will briefly include some basic background information

related to IEEE 802.11 communication that is pertinent to this paper.

Basic 802.11 Operation

 There are a number of steps that a station will go through to join an 802.11

wireless network. While a full discussion of all topics is outside the scope of this work,

one may find more information at [IEEE Wireless].

Scanning

 Scanning is the most basic operation that a station can perform when preparing to

join a wireless network. Scanning is typically triggered by the user in some sort of user

interface, but does not have to be user-initiated. There are two types of scanning: active

and passive. In active scanning, a station is transmitting Probe Request frames and

waiting for Probe Response frames. These Probe Request frames can be broadcast or

directed at particular BSSIDs and are meant to query the access points. The Probe

Response frame is returned with the SSID of the of the wireless network in addition to

other technical information. Based on the information in the Probe Response, the station

can then decide which networks are suitable for the station to join. In passive scanning,

stations simply listen for transmitted Beacon frames that contain the name of the SSID

and additional technical information about the network. The station can then decide

which networks are suitable for the station to join. If encryption is supported by the

access point, it is not in effect at this point.

64

Synchronization

 An additional function of Beacon frames is that it allows stations to synchronize

with the access point to support additional functionality. For example, to support a

power-saving mode, where the wireless radio can sleep for a time period and use less

battery power, wireless clients have to synchronize their clocks with the clock for the

access point. To do this, the stations use a timestamp that is transmitted with the Beacon

frame and then, accordingly, adjust their clocks by some calculated offset. One last

function of Beacon frames is that they can contain capability information, such as

supported transmission rates, channels and encryption types available. If encryption is

supported by the access point, it is not in effect at this point.

Authentication

 Before the station can associate to the network, the access point must authenticate

the client. This step serves to establish the identity of a client. There are several basic

types of authentication: 1) open system and 2) shared key authentication. In an open

system, there is no authentication mechanism, meaning anyone can join this access point.

The client sends an authentication request to the access point, the access point

authenticates the client and sends back an authentication response after which the client

joins the network. This type of network has no encryption and is insecure.

 In a shared key environment, the client will send an authentication request to the

access point which will respond with a “challenge” in order to verify identity. The user

65

typically will enter a password and the client will encrypt this information and send it to

the access point which will validate the appropriate response to the challenge. If the

challenge is validated, the access point will authenticate the client and send back a

response. If the challenge is not validated, the access point will deny network access

until the challenge is properly validated (the access point may support limited responses

or unlimited responses, as it is programmed). If encryption is supported by the access

point, it is not in effect at this point.

 Some examples of a shared key authentication system include WEP (Wired

Equivalent Privacy), WPA (WiFi Protected Access) and WPA2 (WiFi Protected Access

2). WEP is currently not recommended to secure a WLAN because of a weakness that

will allow a cracker to capture an encrypted form of an authentication response frame and

use cracking software to derive the WEP key [Bittau].

Association

 The last step in a client joining a wireless network is the Association Request and

Response. This step will enable a client to send and receive data on the network. The

client sends an Association Request to the access point and it will either allow or deny the

client in an Association Response. If the station’s access is allowed, the access point will

add the client in its list of connected clients and will begin to forward packets to the

client. If encryption is supported by the access point, it is in effect at this point.

 This process can be accurately described using the IEEE 802.11 state machine

[IEEE Wireless] (see Figure 12). At any point, the station can progress through the states

66

or be stuck in a particular state. A station may leave a network by sending a

Disassociation or De-authentication Request.

State 1

Unauthenticated,
unassociated

State 2

Authenticated,
unassociated

State 3

Authenticated,
Associated

Deauthentication
notification

Disassociation
notification

Successful association
or re-association

Deauthentication
notification

Figure 12: IEEE 802.11 state machine

 Once a station has fully associated with a wireless network, it is free to receive

and transmit data using CTS & RTS management frames.

Wireless Security and Potential Risks of Wireless Networks

 While a full discussion of wireless security is outside the scope of this paper it is

worth mentioning that the two biggest risks to privacy in wireless networks include

network intrusion and wireless cracking and data interception. In both cases, the risks

can be mitigated by using some sort of encryption or wireless security protocols such as

67

WEP, WPA, WPA2, VPN or 802.1X. It is worth noting that the use of WEP is considered

insecure due to the ease of cracking the encryption key. Additionally, many consumer

brand routers such as Cisco, DLink and NetGear, offer “security” features such as hidden

SSIDs and MAC address authentication. These features should not be considered

security mechanisms due to the relative ease with which they are bypassed. More

information wireless network vulnerabilities and security mechanisms can be found in

[Leon-Garcia, Stallings].

IEEE 802.11 Operation Modes

Infrastructure mode

 This is the typical operation mode of 802.11 stations, STAs, and access points. In

Infrastructure mode, clients assume Managed mode while the access points (APs) assume

Master mode. In Managed mode, all the clients are connected to a main access point.

The AP will manage these clients. As a collection of client nodes and access point, this

unit is called the Base Service Set or BSS. Each BSS is identified by a BSSID, which

corresponds to the access point’s MAC address.

 Multiple BSSs can be linked together to form an Extended Base Service Set or

EBSS. An EBSS is typically created when a single access point cannot cover an entire

geographic location due to remoteness and lack of signal strength, such as in a large

office building. This allows the user to roam freely while the user’s antenna switches

transparently between the stations based on the signal it receives.

68

Ad hoc mode

 In an ad hoc mode, stations (STA) connect to each other to form a peer-to-peer

network. There is no central access point in ad hoc mode, but rather each station acts as

both an access point and a client.

Promiscuous mode and monitor mode

 In the 802.11 standard, the physical layer is shared between STAs. Therefore, if a

client broadcasts in a particular area, it is sharing that medium with all other STAs that

are within its range. In normal operation, the wireless radio driver will filter out any

packets that are not addressed to the STA, as indicated by the hardware address, and drop

them. In Promiscuous mode, all of the packets are delivered to the client, regardless of to

whom they were addressed. This allows a client to capture all the traffic on a network

segment. While this functionality can be used to audit and inspect networks for proper

operation, it can also be used for traffic sniffing.

 Monitor mode is similar to promiscuous mode but adds the ability that clients can

capture packets without having to be associated with an access point or ad hoc network

first. Monitor mode only applies to wireless networks, while promiscuous mode can be

used on wired or wireless networks. Again, like Promiscuous mode, Monitor mode can

used for both legitimate purposes, such as network audits, and also for malicious

purposes, such as packet injection, traffic sniffing and WEP cracking. Typically the

69

support for both Promiscuous and Monitor mode are dependent on the hardware and

driver support.

 One important note to make about promiscuous and monitor modes is that these

modes are unaffected by either the unicast or multicast bit (the least significant bit of the

most significant address octet) setting. The traffic will be delivered to the intercepting

station regardless of this setting. Listing 4 shows how someone can easily capture a

MAC address and place the interface in promiscuous mode.

#include <sys/socket.h>
#include <sys/ioctl.h>
#include <linux/if.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>

int main(int argc char *argv[]) {
 struct ifreq s;
 int fd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);

 #ifdef __APPLE__
 strcpy(s.ifr_name, "en0");
 #else
 strcpy(s.ifr_name, "eth0");
 #endif
 if (0 == ioctl(fd, SIOCGIFHWADDR, &s)) {
 for (int i = 0; i < 6; ++i) {
 printf("%02x", (unsigned char) s.ifr_addr.sa_data[i]);
 }
 puts("\n");
 return 0;
 }

 ioctl(fd, SIOCGIFFLAGS, s);
 s.ifr_flags |= IFF_PROMISC;
 ioctl(fd, SIOCGIFFLAGS, s);

 return 0;
}

Listing 4: C code to modify a network interface’s promiscuous mode setting

70

(1)

(2)

Wireless Radio Headers

 Wireless radio headers serve two major purposes. The first purpose is that they

are a preamble to the rest of the wireless frame. Frame preambles are used to

synchronize communications between two or more systems. When a preamble is seen,

then stations know that a block of data is about to be transmitted. This also ensures that

proper timing is observed so that all systems are interpreting the start of data

transmissions correctly. Preambles add to the overhead of transmitting a packet.

 Overhead is metadata that supports the transmission of user data and does not

contribute to the actual user message. However, the cost of the overhead of a

transmission can be amortized by the size of the packet that is transmitted. If the payload

of the packet is small, then the header contributes a higher percentage of overhead. If the

payload of the packet is big, then the header “cost” is reduced because the percentage of

overhead is much smaller. A high percentage of overhead is bad for a network because

instead of transmitting useful data, much of the bandwidth is consumed with “overhead”

data. This leads to a decrease in throughput and bandwidth. One may calculate overhead

costs

and protocol efficiency.

71

 The second use of wireless headers is that they are a mechanism to supply

information from the driver about wireless frames to user-space applications and from

user-space applications to the driver. This information can be useful in reporting

characteristics about the frames, such as the channel, data rate, and the RF signal power

and noise level at the antenna. There are several common 802.11 header types:

Radiotap

 “Radiotap is the defacto standard for 802.11 frame injection and reception

[Radiotap].” The system was initially designed for NetBSD systems by David Young.

The radiotap format is more flexible than the Prism or AVS header formats because

radiotap format allows driver developers to specify an arbitrary number of fields based on

a bitmask presence field in the radiotap header. This flexibility allows new fields to be

added over time without the need to change existing parsers to support them.

! Each radiotap capture starts with a radiotap header (see Listing 5).

!

! This header contains information such as the version of the header (as of

publication, the version is 0, but can change for drastic revisions to the header), the length

of the header, including data fields, in bytes, and what fields are currently present in the

struct ieee80211_radiotap_header {
! uint8_t it_version;
! uint8_t it_pad;
! uint16_t it_len;
! uint32_t it_present;
}; __attribute__((__packed__));

Listing 5: Radiotap header struct

72

header. The it_present variable is a bitmask of the radiotap data fields that follow the

header. By setting bit 31 using the mask 0x80000000, driver authors can extend the

presence bitmap by another 32 bits. This can be recursively done to chain long segments

of header data together. To reduce overhead cost, if a field is not present in the bitmask,

then the field simply does not exist in the header data and the data is not padded out. To

keep natural byte alignment, padding is added to some fields so that data is aligned on

natural word boundaries. As of publication, the currently available fields are shown in

Listing 6.

enum ieee80211_radiotap_type {
! IEEE80211_RADIOTAP_TSFT = 0,
! IEEE80211_RADIOTAP_FLAGS = 1,
! IEEE80211_RADIOTAP_RATE = 2,
! IEEE80211_RADIOTAP_CHANNEL = 3,
! IEEE80211_RADIOTAP_FHSS = 4,
! IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5,
! IEEE80211_RADIOTAP_DBM_ANTNOISE = 6,
! IEEE80211_RADIOTAP_LOCK_QUALITY = 7,
! IEEE80211_RADIOTAP_TX_ATTENUATION = 8,
! IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9,
! IEEE80211_RADIOTAP_DBM_TX_POWER = 10,
! IEEE80211_RADIOTAP_ANTENNA = 11,
! IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12,
! IEEE80211_RADIOTAP_DB_ANTNOISE = 13,
! IEEE80211_RADIOTAP_RX_FLAGS = 14,
! IEEE80211_RADIOTAP_TX_FLAGS = 15,
! IEEE80211_RADIOTAP_RTS_RETRIES = 16,
! IEEE80211_RADIOTAP_DATA_RETRIES = 17,

! IEEE80211_RADIOTAP_MCS = 19,
! IEEE80211_RADIOTAP_AMPDU_STATUS = 20,

! IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE = 29,
! IEEE80211_RADIOTAP_VENDOR_NAMESPACE = 30,
! IEEE80211_RADIOTAP_EXT = 31
};

Listing 6: Radiotap data field bitmask

73

 Typically, support for radiotap is found on BSD operating system variants,

however there is support for Linux depending on the kernel version and drivers available.

Other options for wireless headers include AVS and Prism headers, for which similar

information that is available in radiotap, is available. For more information on the

radiotap header format, please refer to [Radiotap]. Figure 13 shows an example packet

capture with a radiotap header.

74

Figure 13: Example packet capture with a radiotap header using Wireshark

75

IEEE 802.11 LAN Management

 The IEEE 802.11 standard defines a number of wireless LAN control and

management frames. Management frames are essentially the skeleton of wireless

networks supporting the infrastructure through managing the link and devices

connections and states. While some frames are simple broadcast type frames where no

reply is expected, other frames follow the request-response paradigm.

 While a full review of all 802.11 management frames is outside the scope of this

paper, they can be found at [IEEE Wireless]. However, there are several of the frames

that have particular relevance to this paper:

Beacon frame

 This is frame subtype 0x8. A beacon frame is a management frame that is

periodically sent by a wireless access point to announce the presence of that access point

to clients. A typical beacon frame will contain information such as a timestamp, SSID

and other parameters and capabilities regarding the access point in order to facilitate

communication. This frame will give a client wireless radio’s information about how to

best communicate with the access point. This frame is typically broadcast about 10 times

per second.

76

Probe request frame

 This is frame subtype 0x4. A probe request frame is broadcast from a device

when it needs to get information about another device. The probe request can be sent to

the broadcast address (FF:FF:FF:FF:FF:FF) or to a specific hardware address. Typically

this type of frame is used by a device to determine which radios are currently within

range. See Figure 14 for an example.

Probe response frame

 This frame subtype is 0x5. This is the response to the probe request frame and

will typically contain information about the capabilities of a particular device. For

example, it may contain support data rates, SSID, country information as well vendor

specific information. See Figure 14 for an example.

Other frame types

 There are other types of control and management frames in the IEEE 802.11

WLAN Standard, however it is outside of the scope of this work to discuss them all.

Instead, a brief listing of them will be included and one may reference [IEEE Wireless]

for in depth discussion. Other frame types include: authentication frame, association

request frame, association response frame, de-authentication frame, disassociation frame,

re-association request frame, re-association response frame, RTS (request-to-send) frame,

CTS (clear-to-send) frame, ACK (acknowledgement) frame, PS-Poll frames, data frames

and NULL frames [IEEE Wireless].

77

Probe request (type 0x4)
00:11:22:33:44:55

Probe response (type 0x5)
BSSID: 11:11:22:22:33:33
DST: 00:11:22:33:44:55

SSID: FreeWiFi

Actual device
hardware address
00:11:22:33:44:55

Access point

Data store of
hardware
addresses

00:11:22:33:44:55

Figure 14: Normal IEEE 802.11 probe request and response

 The primary difference between the beacon frame and the probe request and

response frame is that a beacon frame is unsolicited and sent by the access point to

announce the presence of the wireless network while the probe request is sent by wireless

clients to determine which networks are available. The probe request exposes the

existence of the user and any included device data to anyone who may be monitoring

wireless traffic.

 There are interesting consequences to exposing this information without the user’s

consent. Although the hardware address cannot immediately be linked to a particular

user, there is a potential risk that such a link can be made by acquisition of additional

information. For example, AdMob was recently acquired by Google. If AdMob was using

hardware addresses to track users, AdMob would have a large collection of MAC

addresses with behavior statistics. If a user happens to have an active Google account

and uses a device to access Google’s services, it now becomes possible for Google to tie

78

this user account to a mobile phone device. As a result, the information collected through

the ad service can be used to obtain a detailed overview of who is using which

applications [Seriot].

 Additionally, consider an alternate scenario. Suppose a mall management

company purchases a mass of collected advertising data. The management company

could place scanning nodes inside stores so that when customers walk in stores in the

mall their hardware address is recorded and tracked. Additionally, they can triangulate

signal strength (RSSI) and potentially infer what might interest a customer. The

management company could offer free WiFi to the mall visitors which is subsidized by

vendors who would benefit by the ability to serve targeted ads to the customer. This WiFi

access with its “hidden agenda” would be perceived by the mall visitor as a benefit of

visiting that mall when, in fact, the WiFi access was enabling targeted advertising to the

mall visitor. The management company would use the potential customer’s MAC address

to determine what might interest the customer and then serve the ad in a separate frame.

79

CHAPTER 7

A SOLUTION TO USER TRACKING:

DISPOSABLE HARDWARE ADDRESSES

 Before discussing what solutions may exist to hardware user tracking, it is useful

to set goals and expectations for such solutions:

Effective: This is the primary goal of any solution. The solution must eliminate

the ability to track user devices based on their hardware address. Crucial to the

success of the solution is the idea that, there must not be any way to

deterministically map old addresses to new addresses. Additionally, the solution

must not not introduce any sort of new trackable identifiers that negate the

solution or even make the problem worse.

Lightweight: The solution must have no impact to existing technical standards or

protocols and little or no impact on client performance. In addition, the system

must be self-contained, with all code running on the client device.

Transparent: The solution must work with other devices that have no support for

a privacy mode regardless of whether the enhanced device is currently in privacy

mode or not. Additionally, the system must allow all of the same functionality

regardless of whether privacy mode is enabled or disabled on an enhanced device.

Lastly, the change must be completely transparent to applications running on the

enhanced device.

Controllable: The user must have a user interface to control whether or not the

device is in privacy mode. If the operating system were to automatically make

the decision for the user of whether the device is in privacy mode, it should at all

times default to the most conservative option of favoring privacy.

 With the goals of the solution in mind, periodically-rotating disposable hardware

addresses would alleviate privacy concerns regarding the tracking of hardware addresses.

This system would offer control to the user of when the user wants to expose identifying

information, such as the interface address, and when the user wants to be cloaked. The

user would be making a conscious, affirmative privacy decision.

 In this system, the user would be given a privacy control in the form of a user

interface that would determine whether or not the user was in “privacy mode.” This

privacy mode would allow the client make probe requests using disposable, randomly

generated MAC addresses. Other probe request and response functionality would

continue to function as normal.

 In addition, this change would apply to applications running on the system that

could interrogate devices for their MAC address (e.g., a program could use an ioctl()

function call to get the MAC address). Applications, advertising frameworks and

tracking frameworks that attempt to build user information databases or track interface

81

addresses will cease to function properly. All of this functionality would be transparent

to the adversary access points or higher-level software layers.

 The user-mediated “privacy mode” election would be a boon for privacy because

no longer could tracking services that record MAC addresses rely on the hardware

address that is “sniffed” in the probe request (or other requests) and in applications

through APIs as being unique and user identifiable (see Figure 15).

 While the idea of having rotating MAC addresses may be a cause for alarm for

some individuals such as IT administrators, the proposed framework is no worse for

security for several reasons: 1) Users can already manually change their MAC address

and this framework is simply automating the process to provide more user privacy; 2)

Many devices support a managed configuration mode where an administrator can apply a

policy to the device to lock certain settings to prevent changes – however, an organization

could simply disallow access to this feature, and; 3) the likelihood of an attacker being

able to successfully execute a collision attack to generate collisions is low due to the fact

that the new addresses are randomly generated in a large address space and would require

extremely precise timing. However, even if an attacker was able to perform a collision

attack and receive another node’s traffic, security would be no worse because the attacker

can already capture packets on a shared physical layer environment using a program such

as WireShark.

82

Probe request (type 0x4)
55:44:33:22:11:00

Probe response (type 0x5)
BSSID: 11:11:22:22:33:33
DST: 55:44:33:22:11:00

SSID: FreeWiFi

Actual device
hardware address
00:11:22:33:44:55

55:44:33:22:11:00
55:44:33:22:11:00
55:44:33:22:11:00

Access point

Data store of
hardware
addresses

Figure 15: Privacy conserving IEEE 802.11 probe request and response

 There are several architectural layers (Figure 16) that this design will affect:

Applications & User Interface

Frameworks

Operating System

Drivers

83

Applications & User Interface

Frameworks Libraries

Runtime

Operating System

Firmware Drivers

Hardware

Figure 16: Software layers in an operating system

Application and User Interface

 The highest and easiest to understand OSI layer that would be affected is the user

interface layer. In this layer, the operating system is changed to expose a user interface

element, such as switch or radio button, that would control a user-settable preference that

indicates if the device should be in “privacy mode.” When the control is changed, there

is a function call to the next level down, the Framework layer. Figure 17 shows how this

user interface might be implemented on iOS.

84

Figure 17: User interface implementation of privacy mode

Frameworks

 In this layer, there resides an API that would handle the user-determined function

call from the Application layer. It is important to note that this API should be an “entitled

API”, such that only verified processes may call and modify this setting. Entitlements

85

confer specific capabilities or permissions to an application such as the ability to read or

write specific files that are normally not accessible or the ability to access certain

hardware. These entitlements are bundled and signed into the binary and installed with

that application. When the application is launched, the signature of the binary is checked

for validity by the operating system. When the application attempts to access the entitled

API, the operating system will intercede and perform an entitlement check. The

entitlement check will occur in another, less privileged process that would check if the

application is properly entitled to access that API. If it is not, then the API call fails. If

the application is properly entitled, then the API call can proceed to change the

preference. It is important that this entitlement checking process be a separate, lower-

privilege process because if it was not a separate process, an attacker could bypass the

checking mechanism. It is also important that the entitlement checking process is a lower

privilege because, if an attacker were able to compromise the address space of the

entitlement-checking daemon, it would be a trivial nuisance to the attacker to bypass this

checking mechanism through privilege escalation. These entitlements can be

implemented easily as a key-value pair in a text file.

 After the entitlement check, the preference is written to disk in a properties file.

This file should be restricted from access in third party applications, so that they cannot

determine what mode the user is in (or change the mode). This access restriction can be

accomplished by placing third party applications in a sandbox. This properties file is

simply used for persistence of the preference and merely indicates if the device is using

its actual hardware address in requests or if the device is using randomly generated,

86

rotating addresses (see Figure 18). Obviously, the user interface for this setting can

include some explanation of what the setting does, but the actual details of how the

setting works are too technical to be useful to the user. At the same time the property file

is written to disk, a message will be passed to the operating system indicating that the

preference has changed and whether or not the device is in privacy mode.

Runtime

Operating System

Drivers

Frameworks
Entitlement

check ❌

Applications

Preference
file

Figure 18: Diagram of software layers in proposed solution

Operating System

 At the OS layer, there would be an IEEE 802.11 manager or configuration

daemon. When the daemon receives the privacy mode change message from the

87

Framework layer, the device would then generate a disposable address. This can be done

by using the code in Listing 7. The daemon would register a timer with the run loop such

that every time the timer expires, it would generate a new disposable address. Each time

a new address is generated, it would need to be checked to see if the new address collides

with other devices using the procedure described in the section “Checking Addresses &

Handling Device Collisions.”

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

typedef unsigned char uint8_t;
#define ETH_ALEN 6

void get_disposable_address(char **addr);

int main(int argc, char *argv[]) {
 char *addr;
 get_disposable_address(&addr, get_real_address());

 printf("new address:\t%s\n", addr);

 return 0;
}

void get_disposable_address(char **addr, const char *real_address) {
 time_t t = time(NULL);

 for(int i = 0; i < ETH_ALEN; i++) {
 t ^= *(real_address + i);
 }
 srand(t);

 int num_bytes = 0;
 uint8_t byte = rand();

 // set locally configured bit
 byte <<= 1;
 byte |= 1;
 num_bytes++;
 asprintf(addr, "%02x", byte);

 for(int i = num_bytes; i < ETH_ALEN; i++) {
 byte = rand();
 asprintf(addr, "%s:%02x", *addr, byte);
 }
}

Listing 7: C code to generate random hardware addresses

88

 This code has several important points to consider. The first is that the code is

going to follow the specifications and set the U/L bit in the address. While this bit would

be detectible in the harvesting station’s software, knowing this information would not

increase any PII exposure because any harvesting device would not be able to do

anything with the information except mark it as fake or “locally administered.”

 The second item of note is that this code completely discards any original OUI

information. This would allow an Apple device to masquerade as a Cisco device at one

moment and as an Intel device the next. This technique would actually improve privacy.

Consider the recent news that the online travel website Orbitz admitted to showing Mac

users higher priced hotels than it showed PC users because “[Mac users are] a group of

customers that spend as much as 30% more on their hotel rooms, according to the

company’s research.” If locations were harvesting MAC addresses and then using them

to market to customers, a similar predatory marketing practice could occur since it would

be possible to link the OUI to a vendor and the unique last 3 bytes of the MAC address to

a user.

 The last item of note here is that Listing 7 uses the standard libc srand() and

rand() functions. srand() is used to seed a new sequence of pseudo-random numbers

to be returned by calling rand(). In the code listing, the author is XORing the universal

hardware address of the device with the time that the function was called to produce a

more random value. The possible values of the random number are between 0 and

RAND_MAX, typically a 32 bit integer. Using pseudo-random number generators have the

89

weakness that random number sequences generated by a given “seed” are repeatable if

seeded with the same value. Obviously, this property is undesirable from the requirement

of uniqueness because collisions are possible that will generate error conditions. While

rand() is not suitable for cryptographic use, the function may be acceptable for use in

this application given that the requirements are not as rigid as in cryptography. However,

the author would encourage the use of a better random number generator such as

sranddev(), arc4random() (and its variants), or implementing a TRNG. Some devices

have support for TRNG using entropy sources such as thermal noise or interrupt timing.

Hardware Address Collisions

 Due to the fact that these disposable, locally administered addresses are randomly

generated and the fact that the set of these potential addresses intersect with the set of

unique, universal addresses, there is a limited possibility to have address collisions.

 Looking back at the technical details of the hardware address, the entire address

space of MAC-48 is limited to 6 bytes (48 bits). This yields the possibility of 248

(281,474,976,710,656) unique addresses. Each OUI address space (the first three bytes

of the address) is capable of supporting 224 (16,777,216) unique addresses (the last three

bytes of the address).

 Since the address space of computers are limited, the output from a PRNG or

TRNG is periodic. This means that one can expect to see the same random output, if the

PRNG or TRNG is run long enough. For purposes of this discussion, assume that both

90

(3)

devices implement either a TRNG or the same PRNG algorithm, both devices start with

different seed values and that the PRNG is of good quality (produces output that has a

uniform distribution of all possible integers 0 to 2n-1, where n is equal to the number of

bits in the MAC address. If the previous assumptions hold true, then one may calculate

the probability of a collision occurring over time t, using the birthday paradox

where b is the number of randomly chosen bits, f is the frequency of the address switches,

and n is the number of clients on the same LAN [Gruester]. The probability of a collision

in a 24-hour time period, using 47 randomly generated bits, every 5 minutes is shown in

Table 2 and the probability of a collision in a 24-hour time period, using 24 randomly

generated bits, every 5, 10 and 60 minutes is shown in Table 1. The work done in

[Gruester] suggested only using 27 random bits and rotating the address every 5 minutes.

In the scheme suggested in this work, all bits except the U/L bit would be eligible for

rotation. Also in [Gruester], the authors only explored the possibility of having the

address rotated every 5 minutes. In the scheme presented in this work, even if the

address was rotated every 10 seconds and having 1000 clients associated to one access

point, the risk of a collision would be no more than 0.00242%. Rotating the address on a

faster schedule is an improvement for privacy since it gives adversaries less of a window

to build up a profile about a user. Additionally, one last consideration to make about

collisions is that they are only undesirable if the result of the collision has a bad

consequence of some sort. Up until now, privacy improvements were discussed using

91

different unique MAC addresses. Since devices are not used in an isolated manner, but

rather with other devices on the network that can generate the same address, a collision, if

handled properly, actually improves privacy. If there is a collision, there is no way for

sure for an adversary to determine, if an address is seen more than one time, that the

address came from the same device transmitting a fake address or came from another

device using the same fake address. To resolve collisions, a device can use the scheme

detailed in the section “Checking Addresses & Handling Address Collisions.”

92

Number
of Clients

Probability of
collision, 47

bits, 10
seconds

Probability of
collision, 47

bits, 5 minutes

Probability of
collision, 47

bits, 10 minutes

Probability of
collision, 47 bits,

60 minutes

5 0.0000000486% 0.0000000020% 0.0000000010% 0.0000000002%

10 0.0000002187% 0.0000000092% 0.0000000046% 0.0000000008%

15 0.0000005103% 0.0000000215% 0.0000000107% 0.0000000018%

20 0.0000009234% 0.0000000389% 0.0000000194% 0.0000000032%

25 0.0000014580% 0.0000000614% 0.0000000307% 0.0000000051%

50 0.0000059536% 0.0000002507% 0.0000001253% 0.0000000209%

100 0.0000240576% 0.0000010129% 0.0000005065% 0.0000000844%

200 0.0000967162% 0.0000040723% 0.0000020361% 0.0000003394%

300 0.0002179758% 0.0000091779% 0.0000045890% 0.0000007648%

400 0.0003878362% 0.0000163300% 0.0000081650% 0.0000013608%

500 0.0006062972% 0.0000255284% 0.0000127642% 0.0000021274%

600 0.0008733584% 0.0000367731% 0.0000183866% 0.0000030644%

700 0.0011890194% 0.0000500643% 0.0000250321% 0.0000041720%

800 0.0015532798% 0.0000654017% 0.0000327009% 0.0000054501%

900 0.0019661391% 0.0000827856% 0.0000413928% 0.0000068988%

1000 0.0024275966% 0.0001022158% 0.0000511079% 0.0000085180%

Table 1: Probability of collisions using 24 random bits

93

Number
of Clients

Probability of
collision, 27

bits, 10
seconds

Probability of
collision, 27

bits, 5 minutes

Probability of
collision, 27

bits, 10 minutes

Probability of
collision, 27 bits,

60 minutes

5 0.064352% 0.002146% 0.001073% 0.000179%

10 0.289259% 0.009655% 0.004828% 0.000805%

15 0.673638% 0.022528% 0.011265% 0.001878%

20 1.215639% 0.040761% 0.020383% 0.003397%

25 1.912665% 0.064352% 0.032181% 0.005364%

50 7.582821% 0.262513% 0.131343% 0.021902%

100 27.287168% 1.056553% 0.529679% 0.088475%

200 72.227337% 4.180496% 2.112563% 0.355234%

300 94.429093% 9.176647% 4.698713% 0.798906%

400 99.413348% 15.741704% 8.207682% 1.417221%

500 99.967584% 23.494606% 12.532638% 2.207022%

600 99.999061% 32.012936% 17.545731% 3.164294%

700 99.999986% 40.870544% 23.104320% 4.284195%

800 100.000000% 49.671819% 29.057642% 5.561096%

900 100.000000% 58.078904% 35.253497% 6.988628%

1000 100.000000% 65.829589% 41.544537% 8.559726%

Table 2: Probability of collisions using 47 random bits

 In the case of two devices implementing the same PRNG algorithm and starting

with the same seed value, then the probability of collisions is 100%. This is because

PRNG algorithms are deterministic and are able to reproduce the same sequence of

94

random output given the same initial seed value. Additionally, if different PRNG

algorithms are used on the two different devices or if the distribution of the integer values

are not uniform, then the probability of collisions will increase. In these cases, the

specific probability of collisions would rely on the details of the algorithms themselves.

 Since the probability of collisions rely so heavily on good random number

generation, the author recommends using a TRNG or CSPRNG (cryptographically secure

PRNG). If a TRNG/CSPRNG is not available, one necessary condition to test quality in

a PRNG is a long period length. The quality of a PRNG can be measured using statistical

tests, such as the Diehard tests [Soto]. Some good PRNG algorithms include Algorithm

M, Nanoteq, A5 and Hughes XPD/KPD [Schneier]. For more information on TRNGs

and PRNGs, please reference [Soto, Bishop, Schneier, Anderson, L’Ecuyer, Farhadi].

 One additional benefit to using a TRNG or good PRNGs is that devices are less

susceptible to attackers being able to predict the generated addresses. If they were able to

reliably predict these addresses they could spoof the same address, creating collisions and

sending and receiving traffic as another device.

Checking Addresses & Handling Address Collisions

 This system will use the “active” schema described in [Gruteser], rather than a

“passive” promiscuous scheme to prevent collisions. An active mode is needed because

of the “hidden node” problem. The hidden node problem, illustrated in Figure 19, is

where a node is visible from a wireless access point but not from other nodes

95

communicating with the same wireless access point. This can lead to difficulties in

media access control. For more information on the hidden node problem, see [Stallings,

Leon-Garcia].

Wireless
Access Point 21

Figure 19: Hidden node problem

“Since the hidden node problem foils a completely passive approach — promiscuously

listening to the network medium — we chose an active ARP-based approach. However,

sending a reverse ARP request for the new interface identifier with the current identifier

as a source address reveals exactly the information we seek to hide: the link between new

96

and old address. Therefore, we extend this mechanism with a double address switch.

First, the client writes a randomly chosen address into the source field of a reverse ARP

request. The actual request is for a second randomly chosen address. After sending the

packet, the client listens for replies to the first address. A reply indicates an occupied

second address; thus, the client repeats the request with a new randomly chosen address

until an available address is found.

 This protocol still allows address collisions on the first randomly chosen address.

However, the client uses this address only to transmit a small number of reverse ARP

requests. Therefore, no significant network disruptions occur [Gruteser].” This scheme

allows for machines that don’t support privacy mode or that want to use their real address

to still participate in a network that includes devices that support privacy mode. In

addition to adopting the collision detection scheme in [Gruteser], this research also

adopts the sequence number randomization scheme in [Gruteser] to prevent address

correlation based on the packet sequence number.

Drivers

 This layer is the lowest and last layer to require changes to support the new

schema. Typically, drivers read a hardware address from EEPROM and write it into a

device register for easy access. When the driver code prepares to assemble a packet for

transmission, the driver places the hardware interface address into the packet.

97

 When the operating system passes a message to the driver indicating the the user

has gone into privacy mode, then the message will include the random previously

generated MAC address. If the user is going out of privacy mode, then the message will

simply indicate that situation with no additional arguments or parameters.

 Since the OS has already verified that this MAC address does not collide with

other devices on the network, it will simply overwrite the previously loaded MAC

address data in the device register. The packets that are assembled and transmitted will

now contain the locally administered MAC address. When receiving packets, the driver

will filter packets based on the current (local or universal) MAC address and pass those

to the higher layers in the networking stack. Any additional collision resolution would be

handled by the procedures described in the section on handling address collisions.

 There is no need to make a backup of the universal address because it is always

available in EEPROM and, if the user decides to leave privacy mode, the ephemeral

address will be overwritten by reloading the register with the real MAC address. The

driver code does not include a flag for the device to know if it was in privacy mode or not

for two reasons: 1) it would be wasteful from a performance standpoint because the CPU

would have to execute a JMP, CALL or RET instruction, including all of the overhead that

comes with a function call, such as pushing a new stack frame, instead of simply using

the data that was already in the register, and; 2) the driver doesn’t have a concept of

privacy mode. Privacy mode is a higher level concept, whereas the driver is just

primarily concerned with the building, sending and receiving of packets destined for a

98

particular hardware address. Listing 8 shows the code associated with setting the new

address.

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <net/if.h>
#include <net/if_arp.h>

void set_address(struct ifconf *ifr, const unsigned char *address_bytes)
{
 int fd = socket(AF_INET, SOCK_DGRAM, 0);

 *ifr->ifr_hwaddr.sa_family = AF_LINK;
 //strncpy(ifr->ifr_name, "eth0", IFNAMSIZ-1);

 for(int i = 0; i > ETH_ALEN; i++) {
 *ifr->ifr_hwaddr.sa_data[i] = address_bytes[i];
 }

 if (ioctl(fd, SIOCSIFHWADDR, &ifr) != 0) {
 perror("ioctl");
 }

 close(fd);
}

Listing 8: C code to set random hardware addresses

99

CHAPTER 8

TESTING

 To fully test the existing problem, the author purchased 3 Raspberry Pi single-

board computers, revision B. The Raspberry Pi is about the size of a credit card and each

features a Broadcom BCM2835 system-on-a-chip (SoC), which includes a 700 MHz, 32-

bit ARM11 microprocessor (ARMv6 instructions), VideoCore IV GPU and 256 MB of

RAM. The RPi uses an SD card for both booting and for main storage. In addition, each

RPi comes with a number of different interfaces and buses including 2 USB 2.0 ports, 1

composite RCA, 1 HDMI port, 3.5mm audio jack, 100BaseT Ethernet (RJ45), 8 x GPIO,

UART, I2C and SPI bus. The power source for the RPi is +5V micro USB connection

(see Figure 20). The RPi boards can run a number of different operating systems

including Debian GNU/Linux, Fedora, Arch Linux ARM and RISC OS. For this work,

the author installed the “Raspbian Wheezy 9-18-2012” Debian operating system.

Figure 20: Raspberry Pi single-board computer

 In addition to these single board computers, the author also purchased 3 Tenda

U311M USB Wireless N adapters with the Ralink RT5370 chipset and 3 8GB SanDisk

SD cards. The Tenda wireless adapters used the rt2800 driver and mac80211 and

cfg80211 hardware abstraction drivers.

 The author installed a wireless USB adapter on each Raspberry Pi board as well

as software written by the author in C (harvestd, see Appendix A) that would track and

record individual IEEE 802.11 Probe Requests, with the associated radiotap headers, and

write them into a SQLite database on the Raspberry Pi. Each Raspberry Pi was given a

101

unique station ID when writing to the database, based on the last byte of their Ethernet

MAC address. The source code for this project is freely and publicly available at https://

github.com/davidstites/cs700 and is licensed under MIT/BSD.

 The author placed these devices in a number of businesses and public areas. This

allowed the devices to collect thousands of hardware addresses. This information could

be cross correlated with RSSI, station position and time stamps to derive useful

behavioral data. For example, this information could be used to “advertise” to a

particular hardware address based on the signal strength seen at certain discrete points.

102

https://github.com/davidstites/cs700
https://github.com/davidstites/cs700
https://github.com/davidstites/cs700
https://github.com/davidstites/cs700

CHAPTER 9

RESULTS FROM TESTING

 The results from the authors tests demonstrate that this technique, combined with

the techniques in [Gruteser, Gansemer, Kitasuka, Li, Bourimi, Kang], demonstrate that it

is possible to collect hardware addresses and cross-correlate to other datasets to build a

user profile based on a device.

 The author worked with local businesses in the San Jose and Los Angeles area to

install the Raspberry Pi to collect hardware addresses. The locations included a branch

office of a worldwide shipping, logistics and business services company, a bar, a hotel

and two office building complexes. The author chose these locations because they were

high traffic locations where a large percentage of the people would be using mobile

devices. Two of the locations, the bar and hotel, offered free wireless internet. Table 3

shows the number of unique addresses and SSIDs collected by the Raspberry Pi. The

average number of days that the harvesting software was running was 5 days.

Location Unique Addresses Unique SSIDs

Office 1 1,243 237

Office 2 231 310

Bar 3,102 2,018

Shipping company 7,845 4,990

Hotel 445 361

Total 12,866 7,916

Table 3: Unique addresses and SSIDs collected during testing

 In addition to unique hardware addresses collected, the author also was able to

collect a number of different SSIDs. However, what is most interesting about this is that

these SSIDs were not collected from access points, but rather mobile devices themselves.

To support a more seamless user experience, some mobile devices opportunistically

probe to see if are any of the users previous or preferred networks around.

 For example, many of the devices had probed for the SSID “attwifi”. Many

business often partner with an existing telecommunications provider to install free

wireless hotspots at their business. For example, businesses such as McDonalds and

Starbucks provide free wireless access to their customers through AT&T Wireless. In this

case, these mobile devices were checking to see if this network was available and

opportunistically connect to it. In addition, some of the SSIDs contained information that

revealed location of the access point, such as a business name or street address. For a

partial listing of SSIDs discovered, see Appendix B. For a full listing of SSIDs

104

discovered, the SQLite database files are available at https://github.com/davidstites/

cs700.

 What makes this interesting is that one can begin to associate hardware addresses

with networks that the user has previously been associated with. Again, while actual

individuals cannot be identified, this information simply adds to the rich profile of the

user that one can build.

105

https://github.com/davidstites/cs700
https://github.com/davidstites/cs700
https://github.com/davidstites/cs700
https://github.com/davidstites/cs700

CHAPTER 10

CONCLUSIONS

 Mobile devices, such as smartphones or PDAs, have become increasingly popular

with consumers and often provide essential functionality in their everyday life. Usually

these mobile devices contain a great deal of sensitive information such as addresses,

contacts, ingoing/outgoing call logs, SMS messages and, on the latest models, a calendar,

emails and potentially the user’s current location. A smartphone or mobile device today

can be as powerful as a desktop or laptop in some respects and, while the latest models

feature a complete OS, for many users these devices are “just phones” so there is an

underestimation of the risk connected to mobile device privacy. This thesis described a

currently existing privacy problem associated with user and hardware tracking in mobile

devices. Users can be tracked without their knowledge and consent and have rich

profiles built about them using their hardware interface address regarding their location

and preferences. This information can be potentially cross correlated to other existing

datasets to build advertising profiles for these users. The author prototyped such a

system using a single-board computer and did indeed collect hardware addresses that

could be used for such a purpose. The author also presented a potential mitigation to this

problem using randomly generated, disposable hardware addresses. Lastly, the author

described and demonstrated how such a solution could be built using real world

examples.

107

REFERENCES

[1] N. Seriot. “iPhone Privacy,” in Black Hat DC 2010, Arlington VA. 2010.

[2] M. Egele et al., “PiOS: Detecting Privacy Leaks in iOS Applications,” in Proc. of the

Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.

2011.

[3] M. Bourimi et al., "A Privacy-Respecting Indoor Localization Approach for

Identifying Shopper Paths by Using End-Users Mobile Devices," 8th Int. Conf. on

Information Technology: New Generations (ITNG), pp.139-144, Apr. 2011.

[4] M. Li et al., "Fingerprinting Mobile User Positions in Sensor Networks: Attacks and

Countermeasures," in IEEE Transactions on Parallel and Distributed Systems, vol.

23, no. 4, pp. 676-683, Apr. 2012.

[5] A.P. Felt et al., “Android Permissions Demystified,” in Proc. of the 18th ACM Conf.

on Computer and Communications Security (CCS ’11), pp. 627-638, New York, NY,

2011.

[6] M. L. Yiu et al., “SpaceTwist: Managing the Trade-Offs Among Location Privacy,

Query Performance, and Query Accuracy in Mobile Services,” in IEEE 24th Int.

Conf. on Data Engineering (IDCE 2008), pp. 366-375, Apr. 2008.

[7] R. Tan et al., “Designs of Privacy Protection in Location-Aware Mobile Social

Networking Applications,” in 5th Int. Conf. on Pervasive Computing and

Applications (ICPCA). pp 62-68, Dec. 2010.

[8] X. Liu and X. Li, “Privacy Preserving Techniques for Location Based Services in

Mobile Networks,” in IEEE 26th Int. Parallel and Distributed Processing Symp., pp.

2474-2477, May 2012.

[9] D. A. Cooper, K. P. Birman. “Preserving Privacy in a Network of Mobile

Computers.” Cornell University. 1995.

[10]D. Stites and A. Tadimalla. “A Survey of Mobile Device Security: Threats,

Vulnerabilities and Defenses,” [Online]. Available: http://blog.afewguyscoding.com/

2011/12/survey-mobile-device-security-threats-vulnerabilities-defenses/

[11]J. Bickford et al., “Rootkits on Smartphones: Attacks, Implications and

Opportunities,” in Workshop on Mobile Computing Systems and Applications.

Annapolis, MD: ACM, Feb. 2010.

[12]M. Hypponen, “Malware Goes Mobile”, November 2006, Scientific American

M a g a z i n e . P a g e s 7 0 – 7 7 . h t t p : / / w w w. c s . v i r g i n i a . e d u / ~ r o b i n s /

Malware_Goes_Mobile.pdf

[13]R. Schlegel et al., "Soundminer: A Stealthy and Context-Aware Sound Trojan for

Smartphones,” in Proc. of the 18th Annual Network & Distributed System Security

Symposium (NDSS) Feb. 2011.

[14]J. Rocha. “The Droid: Is this the smartphone consumers are looking for?, ” Nov.

2011. http://blog.nielsen.com/nielsenwire/consumer/the-droid-is-this-the-smartphone-

consumers-are-looking-for/

109

http://blog.afewguyscoding.com/2011/12/survey-mobile-device-security-threats-vulnerabilities-defenses/
http://blog.afewguyscoding.com/2011/12/survey-mobile-device-security-threats-vulnerabilities-defenses/
http://blog.afewguyscoding.com/2011/12/survey-mobile-device-security-threats-vulnerabilities-defenses/
http://blog.afewguyscoding.com/2011/12/survey-mobile-device-security-threats-vulnerabilities-defenses/
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
http://www.cs.virginia.edu/~robins/Malware_Goes_Mobile.pdf
http://blog.nielsen.com/nielsenwire/consumer/the-droid-is-this-the-smartphone-consumers-are-looking-for/
http://blog.nielsen.com/nielsenwire/consumer/the-droid-is-this-the-smartphone-consumers-are-looking-for/
http://blog.nielsen.com/nielsenwire/consumer/the-droid-is-this-the-smartphone-consumers-are-looking-for/
http://blog.nielsen.com/nielsenwire/consumer/the-droid-is-this-the-smartphone-consumers-are-looking-for/

[15]D. McCullagh. 2012, May 16. “Euclid Downplays Privacy Concerns about Wi-Fi

Tracking,” [Online]. Available: http://news.cnet.com/8301-1009_3-57435911-83/

euclid-downplays-privacy-concerns-about-wi-fi-tracking/

[16]G. Ribeiro. 2012, Jun. 16, “Google Can Track Your PC, iPhone, iPad, Mac, Android

Phone And Other Devices,” [Online]. Available: http://www.redmondpie.com/google-

can-track-your-pc-iphone-ipad-mac-android-phone-and-other-devices/

[17]Navizon, Inc., 2012, Oct. “Accurate indoor location of WiFi smartphones, tablets &

laptops,” [Online]. Available: http://www.navizon.com/product-navizon-indoor-

triangulation-system

[18] IEEE, 2012, Oct. 10, “IEEE OUI Listing,” [Online]. Available: http://

standards.ieee.org/develop/regauth/oui/oui.txt

[19]M.C. White, 2012, Jun., “Orbitz Shows Higher Prices to Mac Users,” [Online].

Available: http://moneyland.time.com/2012/06/26/orbitz-shows-higher-prices-to-mac-

users/.

[20]J. Soto, 1999, “Statistical Testing of Random Number Generators,” [Online].

Available: http://carc.nist.gov/rng/rng5.html.

[21]M. Farhadi and M. Babaei, “Introduction to Secure PRNGs,” in Int. Journal of

Communications, Network and System Sciences (IJCNS), no. 4, pp. 616-621, Oct.

2011.

[22]Radiotap.org, 2012, “Radiotap,” [Online]. Available: http://www.radiotap.org/

[23]"IEEE Standard for Information Technology--Telecommunications and Information

Exchange Between Systems--Local and Metropolitan Area Networks--Specific

110

http://news.cnet.com/8301-1009_3-57435911-83/euclid-downplays-privacy-concerns-about-wi-fi-tracking/
http://news.cnet.com/8301-1009_3-57435911-83/euclid-downplays-privacy-concerns-about-wi-fi-tracking/
http://news.cnet.com/8301-1009_3-57435911-83/euclid-downplays-privacy-concerns-about-wi-fi-tracking/
http://news.cnet.com/8301-1009_3-57435911-83/euclid-downplays-privacy-concerns-about-wi-fi-tracking/
http://www.redmondpie.com/google-can-track-your-pc-iphone-ipad-mac-android-phone-and-other-devices/
http://www.redmondpie.com/google-can-track-your-pc-iphone-ipad-mac-android-phone-and-other-devices/
http://www.redmondpie.com/google-can-track-your-pc-iphone-ipad-mac-android-phone-and-other-devices/
http://www.redmondpie.com/google-can-track-your-pc-iphone-ipad-mac-android-phone-and-other-devices/
http://www.navizon.com/product-navizon-indoor-triangulation-system
http://www.navizon.com/product-navizon-indoor-triangulation-system
http://www.navizon.com/product-navizon-indoor-triangulation-system
http://www.navizon.com/product-navizon-indoor-triangulation-system
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://moneyland.time.com/2012/06/26/orbitz-shows-higher-prices-to-mac-users/
http://moneyland.time.com/2012/06/26/orbitz-shows-higher-prices-to-mac-users/
http://moneyland.time.com/2012/06/26/orbitz-shows-higher-prices-to-mac-users/
http://moneyland.time.com/2012/06/26/orbitz-shows-higher-prices-to-mac-users/
http://carc.nist.gov/rng/rng5.html
http://carc.nist.gov/rng/rng5.html
http://www.radiotap.org
http://www.radiotap.org

Requirements Part 3: Carrier Sense Multiple Access With Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications - Section One," IEEE

Std 802.3-2008 (Revision of IEEE Std 802.3-2005) , pp. 1-597, Dec. 26 2008.

[24]H. Zimmermann, "OSI Reference Model--The ISO Model of Architecture for Open

Systems Interconnection," in IEEE Transactions on Communications, vol. 28, no. 4,

pp. 425-432, Apr 1980.

[25]J.D. Day and H Zimmermann, "The OSI reference model," in Proc. of the IEEE , vol.

71, no.12, pp. 1334-1340, Dec. 1983.

[26]W. Stallings, “Wireless Communications & Networks,” 2nd ed., Saddle River, NJ:

Prentice-Hall, Inc., 2004.

[27]A. Leon-Garcia and I. Widjaja, “Communication Networks,” 2nd ed., New York,

NY: McGraw Hill Inc., 2004.

[28]R. Braden, 1989, Oct. “RFC 1122 Requirements for Internet Hosts -- Communication

Layers.” Internet Engineering Task Force, Network Working Group, [Online].

Available: http://tools.ietf.org/html/rfc1122

[29]H. Wing-Chung and K.L.E Law, "Simple slow-start and a fair congestion avoidance

for TCP communications," 2008 Canadian Conf. on Electrical and Computer

Engineering, pp. 1771-1774, May 2008.

[30]A. Bittau et al., "The final nail in WEP's coffin," 2006 IEEE Symp. on Security and

Privacy, vol., no., pp.15 pp.-400, May 2006.

[31]M. Gruteser, and D. Grunwald, “Enhancing Location Privacy in Wireless LAN

Through Disposable Interface Identifiers: A Quantitative Analysis,” in Proc. of the 1st

111

http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1122

ACM Int. Workshop on Wireless Mobile Applications and Services on WLAN Hotspots

(WMASH '03), pp. 46-55, New York, NY: ACM, 2005.

[32]J. Pang et al., “802.11 User Fingerprinting,” in MobiCom ‘07: Proc. of the 13th

Annual ACM Int. Conf. on Mobile Computing and Networking, pp. 99-110, Montreal,

Quebec, Canada: ACM, Sep. 9-14 2007.

[33]S. Gansemer et al., “Improved RSSI-based Euclidean Distance Positioning Algorithm

for Large and Dynamic WLAN Environments,” in Int. Journal of Computing, vol. 9,

no. 1, pp. 37-44, 2010.

[34]T. Kitasuka et al., “Positioning Technique of Wireless LAN Terminals Using RSSI

between Terminals,” in Proc. of the 2005 Int. Conf. on Pervasive Systems and

Computing (PSC-05), pp. 47-53, Las Vegas, NV, Jun. 2005.

[35]P. L’Ecuyer. “Software for Uniform Random Number Generation: Distinguishing the

Good and the Bad,” in Proc. of the 33rd Winter Simulation Conf (WSC ’01), pp.

95-105, Washington, D.C., 2001.

[36]B. Schneier, “Applied Cryptography: Protocols, Algorithms and Source Code in C,”

2nd ed., New York, NY: John Wiley & Sons, Inc., 1996.

[37]M. Bishop, “Computer Security Art and Science,” Upper Saddle River, NJ: Addison

Wesley, 2010.

[38]R. Anderson, “Security Engineering: A Guide to Building Dependable Distributed

Systems,” 2nd ed., Indianapolis, IN: Wiley Publishing, Inc., 2008.

[39]R. Schlegel et al., “Soundcomber: A Stealthy and Context-Aware Sound Trojan for

Smartphones,” in Proc. of the 18th Annual Network and Distributed System Security

Symp. (NDSS), pp. 17-33, Feb. 2011.

112

[40]G. Lee et al., “An Effective Method for Location Privacy in Ubiquitous Computing,”

in Proc. of the 2005 Int. Conf. on Embedded and Ubiquitous Computing, pp.

1006-1015, Heidelberg, Germany, 2005.

[41]D. Singelée and Bart Preneel, “Location privacy in wireless personal area networks,”

in Proc of the 5th ACM workshop on Wireless Security (WiSE ’06), pp. 11-18, New

York, NY, 2006.

[42]J.H. Kang and G. Borriello, “Harvesting of Location-Specific Information through

WiFi Networks,” in Proc. of the 2nd Int. Conf. on Location and Context-Awareness

(LoCA ’06), pp. 86-102, Heidelberg, Germany, 2006.

[43]Y. Zhang and K. Ren, “On Address Privacy in Mobile Ad Hoc Networks,” in Mobile

Networks and Applications, vol. 14, no. 2, pp. 188-197, Apr. 2009.

[44]European Commission, “A Digital Agenda for Europe,” in Communication from the

Commission to the European Parliament, the Council, the European Economic and

Social Committee and the Committee of the Regions, Brussels, Belgium, Aug. 26th

2010. [Online]. Available: http://eur-lex.europa.eu/LexUriServ/do?uri=COM:

2010:0245:FIN:EN:PDF

[45]United States Federal Trade Commission, “Protecting Consumer Privacy in an Era of

Rapid Change: Recommendations for Businesses and Policymakers,” Mar. 2012.

[Online]. Available: http://www.ftc.gov/os/2012/03/120326privacyreport.pdf

[46]Mitre Corporation and National Cyber Security Division, 2012, Oct., “Common

Weakness Enumeration,” [Online], Available: http://nvd.nist.gov/cwe.cfm.

113

http://eur-lex.europa.eu/LexUriServ/do?uri=COM:2010:0245:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/do?uri=COM:2010:0245:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/do?uri=COM:2010:0245:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/do?uri=COM:2010:0245:FIN:EN:PDF
http://www.ftc.gov/os/2012/03/120326privacyreport.pdf
http://www.ftc.gov/os/2012/03/120326privacyreport.pdf
http://nvd.nist.gov/cwe.cfm
http://nvd.nist.gov/cwe.cfm

[47]A.P. Felt et al., “A survey of mobile malware in the wild,” in the Proc. of the 1st ACM

workshop on Security and Privacy in Smartphones and Mobile Devices, 2011, pp.

3-14.

[48]Safe and Savvy, June 2012 “How secure is your iPhone,” [Online]. Available: http://

safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone.

114

http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone
http://safeandsavvy.f-secure.com/2012/06/29/how-secure-is-your-iphone

APPENDIX A: HARVESTED CODE

//
// main.h
// harvestd
//
// Created by David R. Stites on 9/21/12.
//
//

#ifndef harvest_main_h
#define harvest_main_h

#include <pthread.h>
#include <stdio.h>
#include <pcap.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <ifaddrs.h>
#include <arpa/inet.h>
#include <sqlite3.h>

#ifdef AF_LINK
#include <net/if_dl.h>
#endif

#ifdef AF_PACKET
#include <netpacket/packet.h>
#endif

#define STRUCT_PACKED __attribute__((__packed__))
#define STRUCT_ALIGNED(x) __attribute__((__aligned__(x)))

#include "list.h"
#include "dstites_sqlite.h"
#include "harvest.h"
#include "radiotap.h"
#include "ieee80211_defs.h"

#define UID_ROOT 0

#ifdef __APPLE__
#define EN0 "en0"
#else
#define EN0 "eth0"
#endif

//#define LOGGING 1

#define QUIT -1
#define PRECHOSEN -1

#define FALSE 0
#define TRUE 1

#define MAX_SIGNED_CHAR 0x7F
#define UNKNOWN_STATION_ID 0

#define MAX_BYTES_TO_CAPTURE 2048

#define READ_TIMEOUT_MS 10000 /* 10 seconds */

#define PROMISC_OFF 0
#define PROMISC_ON 1

#define BIT_SET(var, pos) ((var) & (1 << (pos)))
#define TO_MBPS(rate) ((rate * 500) / 1000)

/* global vars */

char *prechosen_iface = NULL;
u_int8_t station_id = UNKNOWN_STATION_ID;
node *head = NULL;
char *db_path = NULL;
queue *q = NULL;
sqlite3 *db_handle = NULL;
pthread_mutex_t lock;

#define DB_NAME "addresses.sqlite"

#define TIMESTAMP_BIND_IDX 1
#define TYPE_BIND_IDX 2
#define RSSI_BIND_IDX 3
#define STNID_BIND_IDX 4
#define DST_BIND_IDX 5
#define SRC_BIND_IDX 6
#define BSSID_BIND_IDX 7
#define SSID_BIND_IDX 8

/* DRS */
enum MessageType {
 PROBE_REQ,
 PROBE_RESP,
 BEACON
};

const char *CREATE_TBL_STMT = "CREATE TABLE IF NOT EXISTS packets (id INTEGER
PRIMARY KEY, timestamp INTEGER NOT NULL, type INTEGER NOT NULL, rssi INTEGER
NOT NULL, stn_id INTEGER NOT NULL, dst TEXT NOT NULL, src TEXT NOT NULL, bssid
TEXT NOT NULL, SSID TEXT)";

const char *INSERT_ROW_STMT = "INSERT INTO packets (timestamp, type, rssi,
stn_id, dst, src, bssid, ssid) VALUES (?, ?, ?, ?, ?, ?, ?, ?)";

const char *PROBE_REQ_FILTER = "wlan subtype probe-req";

void get_supported_link_types(pcap_t *stream);
int get_available_interfaces();
void get_interface_information();
pcap_if_t *copy_interface(int iface);
pcap_t *open_device(pcap_if_t *dev);

sqlite3 *open_database();
void close_database(sqlite3 *handle);
void insert_packet_into_db(harvest *h);
void *capture_process_packets();
void *store_packets();

116

#endif

//
// main.c
// harvestd
//
// Created by David R. Stites on 9/18/12.
//
//

#include "main.h"

#pragma mark pcap functions

void get_supported_link_types(pcap_t *stream) {
 int *dlt_buf;
 int n;

 if((n = pcap_list_datalinks(stream, &dlt_buf)) == -1) {
 pcap_perror(stream, "couldn't get list of datalink types.");
 }
 else {
 printf("\n%d link types are supported: \n\n", n);

 for(int i = 0; i < n; i++) {
 const char *str1 = pcap_datalink_val_to_name(dlt_buf[i]);
 const char *str2 = pcap_datalink_val_to_description(dlt_buf[i]);
 printf("%d.\t%s (%d, %s)\n", i, str2, dlt_buf[i], str1);
 }
! !
 pcap_free_datalinks(dlt_buf);
 }
}

void get_interface_information(pcap_if_t *iface, bpf_u_int32 *netp, bpf_u_int32
*maskp) {
 char *net;
 char *mask;
 char errbuf[PCAP_ERRBUF_SIZE];
 struct in_addr addr;

 // ask pcap for the network address and mask of the device
 if(iface == NULL) {
 return;
 }

 if(pcap_lookupnet(iface->name, netp, maskp, errbuf) == -1) {
 printf("No interface information is available.\n");
 }
 else {
 // get the network address in a human readable form
 addr.s_addr = *netp;
 net = inet_ntoa(addr);

 printf("Network:\t%s\n", net);

 // do the same as above for the device's mask
 addr.s_addr = *maskp;
 mask = inet_ntoa(addr);

 printf("Mask:\t%s\n", mask);
 }
}

117

int get_available_interfaces() {
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_if_t *devlist = NULL;

! int i = 0;
 printf("Interfaces available: (-1 to exit)\n\n");

 /* get a list of all the devices that we can open */
 if(pcap_findalldevs(&devlist, errbuf) != -1) {
 pcap_if_t *iface = devlist;
 while(iface->next != NULL) {
 printf("%d.\t%s\n", i, iface->name);
! ! !
! ! ! i++;
 iface = iface->next;
 }
 }

 printf("\n");

 pcap_freealldevs(devlist);
!
! int iface_chosen = 0;
! do {
! ! printf("Choose an interface: ");
! ! scanf("%d", &iface_chosen);
! } while ((iface_chosen < QUIT) || (iface_chosen > (i - 1)));
!
! return iface_chosen;
}

pcap_if_t *copy_interface(int iface_chosen) {
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_if_t *devlist;
! int i = 0;

 /* get a list of all the devices that we can open */
 if(pcap_findalldevs(&devlist, errbuf) != -1) {
 pcap_if_t *cur_iface = devlist;
 while(cur_iface->next != NULL) {
 if(i == iface_chosen || ((prechosen_iface != NULL) && (strcmp(cur_iface-
>name, prechosen_iface) == 0))) {
 pcap_if_t *iface = (pcap_if_t *)malloc(sizeof(pcap_if_t));
! ! ! ! memset(iface, 0, sizeof(pcap_if_t));

 iface->next = NULL;

 iface->name = (char *)malloc(sizeof(char) * (strlen(cur_iface->name) +
1 /* dont forget the null byte */));
 strncpy(iface->name, cur_iface->name, strlen(cur_iface->name) + 1);

 iface->addresses = (pcap_addr_t *)malloc(sizeof(pcap_addr_t));
 memcpy(iface->addresses, cur_iface->addresses, sizeof(pcap_addr_t));

 iface->flags = (bpf_u_int32)malloc(sizeof(bpf_u_int32));
 memcpy(&iface->flags, &cur_iface->flags, sizeof(bpf_u_int32));

 pcap_freealldevs(devlist);
 return iface;
 }

! ! ! i++;

118

 cur_iface = cur_iface->next;
 }
 }

 pcap_freealldevs(devlist);
 return NULL;
}

pcap_t *open_device(pcap_if_t *dev) {
 char errbuf[PCAP_ERRBUF_SIZE];

 if(dev == NULL) {
 return NULL;
 }

 return pcap_open_live(dev->name, MAX_BYTES_TO_CAPTURE, PROMISC_ON,
READ_TIMEOUT_MS, errbuf);
}

#pragma mark sqlite3

sqlite3 *open_database() {
 sqlite3 *db_handle = NULL;

!
! if(db_path != NULL) {
! ! CALL_SQLITE(open(db_path, &db_handle));
! }
! else {
! ! char *path;
! ! asprintf(&path, "%s%s%s", getenv("HOME"), "/", DB_NAME);
! !
! ! CALL_SQLITE(open(path, &db_handle));
! ! free(path);
! }

 // create table if necessary
 sqlite3_exec(db_handle, CREATE_TBL_STMT, NULL, NULL, NULL);

 return db_handle;
}

void close_database(sqlite3 *handle) {
 sqlite3_close(handle);
}

void insert_packet_into_db(harvest *h) {
 sqlite3_stmt *stmt;
 CALL_SQLITE(prepare_v2(db_handle, INSERT_ROW_STMT, strlen(INSERT_ROW_STMT) +
1, &stmt, NULL));

 CALL_SQLITE(bind_int64(stmt, TIMESTAMP_BIND_IDX, h->timestamp));
 CALL_SQLITE(bind_int(stmt, TYPE_BIND_IDX, h->msg_type));
 CALL_SQLITE(bind_int(stmt, RSSI_BIND_IDX, h->rssi));
 CALL_SQLITE(bind_int(stmt, STNID_BIND_IDX, h->stn_id));
!
 char *dst;
 char *src;
 char *bssid;
 char *ssid;

 asprintf(&dst, "%02x:%02x:%02x:%02x:%02x:%02x", h->dst[0], h->dst[1], h-
>dst[2], h->dst[3], h->dst[4], h->dst[5]);

119

 asprintf(&src, "%02x:%02x:%02x:%02x:%02x:%02x", h->src[0], h->src[1], h-
>src[2], h->src[3], h->src[4], h->src[5]);
 asprintf(&bssid, "%02x:%02x:%02x:%02x:%02x:%02x", h->bssid[0], h->bssid[1],
h->bssid[2], h->bssid[3], h->bssid[4], h->bssid[5]);

 CALL_SQLITE(bind_text(stmt, DST_BIND_IDX, dst, strlen(dst), SQLITE_STATIC));
 CALL_SQLITE(bind_text(stmt, SRC_BIND_IDX, src, strlen(src), SQLITE_STATIC));
 CALL_SQLITE(bind_text(stmt, BSSID_BIND_IDX, bssid, strlen(bssid),
SQLITE_STATIC));

 if(h->ssid != NULL && (strlen(h->ssid) > 0) && (strlen(h->ssid) <=
MAX_SSID_LEN)) {
 asprintf(&ssid, "%s", h->ssid);
 CALL_SQLITE(bind_text(stmt, SSID_BIND_IDX, ssid, strlen(ssid),
SQLITE_STATIC));
 }
 else {
 CALL_SQLITE(bind_text(stmt, SSID_BIND_IDX, "", 0, SQLITE_STATIC));
 }

 CALL_SQLITE_EXPECT(step(stmt), DONE);

 if(h->ssid != NULL && (strlen(h->ssid) > 0) && (strlen(h->ssid) <=
MAX_SSID_LEN)) {
 free(ssid);
 }

 free(dst);
 free(src);
 free(bssid);

 CALL_SQLITE(finalize(stmt));
}

#pragma mark packet storage functions

void *store_packets() {
 db_handle = open_database();

 while(TRUE) {
 pthread_mutex_lock(&lock);

 if(q->count > 0 && q->head != NULL) {
 insert_packet_into_db(q->head->h);

 q->head = remove_front(q->head);
 q->count--;

#ifdef LOGGING
 printf("Packet queue count (remove): %i\n", q->count);
 printf ("Primary row id was %d\n", (int)sqlite3_last_insert_rowid
(db_handle));
#endif

 pthread_mutex_unlock(&lock);
 }
 else {
 pthread_mutex_unlock(&lock);
! ! !
#ifdef __APPLE__
 pthread_yield_np();
#else
! ! ! pthread_yield();

120

#endif
! ! !
 }
 }

 close_database(db_handle);

 return NULL;
}

#pragma mark packet capture functions

void *capture_process_packets() {
 bpf_u_int32 netp = 0;
 bpf_u_int32 maskp = 0;
 struct bpf_program filter; /* Place to store the BPF filter program
*/
 struct pcap_pkthdr pkthdr; /* Packet information (timestamp,size...)
*/
 const unsigned char *packet = NULL; /* Received raw data */

 unsigned long long packets_captured = 0;

 pcap_if_t *iface;
 if(prechosen_iface == NULL) {
 int iface_chosen = get_available_interfaces();
 if(iface_chosen == QUIT){
 exit(0);
 }
 iface = copy_interface(iface_chosen);
 }
 else {
 iface = copy_interface(PRECHOSEN);
 }

 pcap_t *capStream = open_device(iface);
 if(capStream != NULL) {
 printf("\nOpened interface:\t%s\n", iface->name);
 }
!
! get_interface_information(iface, &netp, &maskp);

 pcap_set_promisc(capStream, PROMISC_ON);
 pcap_set_rfmon(capStream, PROMISC_ON);

 get_supported_link_types(capStream);

! unsigned char linkType = DLT_IEEE802_11_RADIO;
 pcap_set_datalink(capStream, linkType);
!
! // we can only apply the filter if it is wireless
! if(linkType == DLT_IEEE802_11_RADIO || linkType == DLT_IEEE802_11) {
! ! // compiles the filter expression into a BPF filter program
! ! if (pcap_compile(capStream, &filter, PROBE_REQ_FILTER, 1,
PCAP_NETMASK_UNKNOWN) == -1) {
! ! ! fprintf(stderr, "ERROR: %s\n", pcap_geterr(capStream));
! ! ! exit(1);
! ! }
! !
! ! // load the filter program into the packet capture device
! ! if (pcap_setfilter(capStream, &filter) == -1) {
! ! ! fprintf(stderr, "ERROR: %s\n", pcap_geterr(capStream));
! ! ! exit(1);

121

! ! }
! }

 free(iface);

 printf("\nStarting capture...\n\n");

 while(TRUE){
 if ((packet = pcap_next(capStream, &pkthdr)) == NULL) {
 // most likely due to capture timeout
 printf("Capture timeout: no packets received.\n");
 }
 else {
 harvest *h = (harvest *)malloc(sizeof(harvest));
 memset(h, 0, sizeof(harvest));

 h->msg_type = PROBE_REQ;
 h->stn_id = station_id;

 struct ieee80211_radiotap_header *rh = (struct ieee80211_radiotap_header
*)packet;

#ifdef LOGGING
 printf("\nReceived Packet Size: %d\n", pkthdr.len);

 // as of the current radiotap standard, version is always zero
 printf("Radiotap Version: %d\n",rh->it_version);
!
! // currently unused according to the radiotap standard
! printf("Radiotap Pad: %d\n",rh->it_pad);
!
! // indicates the entire length of the radiotap data, including the
radiotap header
! printf("Radiotap Length: %d\n", rh->it_len);
#endif
!
! // a bitmask of the radiotap data fields that follows the radiotap
header.
! // if bit 31 of the it_present field is not set, the data for fields
! // specified in the it_present bitmask immediately follow the radiotap
! // header. If it is set, then more it_present words follow and the
radiotap
! // data follows after the
! // it_present word that has bit 31 unset. multiple namespaces may be
present.
! // fields are strictly ordered; The developer can specify any combination
of
! // fields, but the data must appear following the radiotap header in the
! // order they are specified in the it_present bitmask (or more
accurately,
! // in the order the bit numbers for the it_present bitmask are defined).
! // data is specified in little endian byte-order
!
#ifdef LOGGING
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_EXT)) {
! ! printf("more headers are available\n");
! }
#endif
!
! // unfortunately, to save bits, if the field is not present in the
! // it_present bitfield
! // then it isn't included in the data blob following the header and we
! // cannot cast

122

! // the memory as a struct so we have to walk it individually and shift
off
! // the bytes

! unsigned char *rt_data = ((u_int8_t*)rh) + sizeof(struct
ieee80211_radiotap_header);
!
! h->timestamp = time(NULL);
!
#ifdef LOGGING
! printf("Timestamp: %llu\n", h->timestamp);
#endif
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_TSFT)) {
! ! rt_data += sizeof(u_int64_t);
! }
! ! !
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_FLAGS)) {
! ! rt_data += sizeof(u_int8_t);
! }

! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_RATE)) {
! ! // rate is in 500 kbps
#ifdef LOGGING
! ! int rate = *((u_int8_t *)rt_data);
! ! printf("Radiotap data rate: %u Mb/s\n", TO_MBPS(rate));
#endif
! ! ! !
! ! rt_data += sizeof(u_int8_t);
! }

! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_CHANNEL)) {
! ! u_int16_t chan_freq = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! ! ! !
! ! u_int16_t chan_flags = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! ! ! !
#ifdef LOGGING
! ! printf("Radiotap channel: %u MHz, ", chan_freq);
!
! ! if(chan_flags & IEEE80211_CHAN_2GHZ) {
! ! ! printf("2 GHz band\n");
! ! }
! ! else if(chan_flags & IEEE80211_CHAN_5GHZ) {
! ! ! printf("5 GHz band\n");
! ! }
!
! ! if(chan_flags & IEEE80211_CHAN_PASSIVE) {
! ! ! printf("Radiotap channel: passive\n");
! ! }
#endif
! }
! ! !
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_FHSS)) {
! ! //u_int8_t hop_set = *((u_int8_t *)rt_data);
! ! rt_data += sizeof(u_int8_t);
! ! ! !
! ! //u_int8_t hop_pattern = *((u_int8_t *)rt_data);
! ! rt_data += sizeof(u_int8_t);
! }

! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DBM_ANTSIGNAL)) {
! ! h->rssi = *((int8_t *)rt_data);

123

! ! rt_data += sizeof(int8_t);
!
#ifdef LOGGING
! ! printf("Radiotap signal: %i dBm\n", h->rssi);
#endif
! }

! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DBM_ANTNOISE)) {
! ! int8_t ant_noise = *((int8_t *)rt_data);
! ! rt_data += sizeof(int8_t);
! ! ! !
#ifdef LOGGING
! ! printf("Radiotap noise: %i dBm\n", ant_noise);
#endif
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_LOCK_QUALITY)) {
! ! //u_int16_t lock = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_TX_ATTENUATION)) {
! ! //u_int16_t tx_atten = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DB_TX_ATTENUATION)) {
! ! //u_int16_t tx_atten = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DBM_TX_POWER)) {
! ! //int8_t tx_power = *((int8_t *)rt_data);
! ! rt_data += sizeof(int8_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_ANTENNA)) {
! ! //u_int8_t antenna = *((u_int8_t *)rt_data);
! ! rt_data += sizeof(u_int8_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DB_ANTSIGNAL)) {
! ! //u_int8_t antenna = *((u_int8_t *)rt_data);
! ! rt_data += sizeof(u_int8_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DB_ANTNOISE)) {
! ! //u_int8_t antenna = *((u_int8_t *)rt_data);
! ! rt_data += sizeof(u_int8_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_RX_FLAGS)) {
! ! //u_int16_t rx_flags = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_TX_FLAGS)) {
! ! //u_int16_t tx_flags = *((u_int16_t *)rt_data);
! ! rt_data += sizeof(u_int16_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_RTS_RETRIES)) {
! ! //u_int8_t rts = *((u_int8_t *)rt_data);

124

! ! rt_data += sizeof(u_int8_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_DATA_RETRIES)) {
! ! //u_int8_t retries = *((u_int8_t *)rt_data);
! ! rt_data += sizeof(u_int8_t);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_MCS)) {
! ! //u_int16_t mcs = *((u_int16_t *)rt_data);
! ! rt_data += (sizeof(u_int16_t) * 3);
! }
!
! if(BIT_SET(rh->it_present, IEEE80211_RADIOTAP_AMPDU_STATUS)) {
! ! //u_int64_t ampdu = *((u_int64_t *)rt_data);
! ! rt_data += (sizeof(u_int32_t) + sizeof(u_int16_t) +
sizeof(u_int8_t) + sizeof(u_int8_t));
 }

! // adding rh->it_len should get us to the very start of the 802.11 probe
request management data
! struct ieee80211_mgmt *wh = (struct ieee80211_mgmt *)((u_int8_t *)(packet
+ rh->it_len));

! for(int i = 0; i < ETH_ALEN; i++) {
! ! h->bssid[i] = wh->bssid[i];
! ! h->src[i] = wh->sa[i];
! ! h->dst[i] = wh->da[i];
! }
!
#ifdef LOGGING
! printf("SRC: %02x:%02x:%02x:%02x:%02x:%02x\n", wh->sa[0], wh->sa[1], wh-
>sa[2], wh->sa[3], wh->sa[4], wh->sa[5]);
! printf("DST: %02x:%02x:%02x:%02x:%02x:%02x\n", wh->da[0], wh->da[1], wh-
>da[2], wh->da[3], wh->da[4], wh->da[5]);
! printf("BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n", wh->bssid[0], wh-
>bssid[1], wh->bssid[2], wh->bssid[3], wh->bssid[4], wh->bssid[5]);
#endif
!
! // what follows seq_ctrl are some variable length data items, and in this
particular case it is ssid and supported rates
! // we would only really be interested in the ssid to see that it is *not*
a base-station but rather a client broadcast
!
! // the format is u_int8_t tag, u_int8_t length then some u_int8_t data
for the length read in
! ! !
! u_int8_t *tag = wh->u.probe_req.variable;
! tag++;
!
! int len = *tag;
! if(len > 0 && len <= MAX_SSID_LEN) {
! tag++;
!
#ifdef LOGGING
! printf("SSID: ");
#endif
!
! // copy over the length of the SSID
! if(len <= MAX_SSID_LEN) {
! ! strncpy(h->ssid, (const char *)tag, len);
! ! // add on the null byte
! ! h->ssid[len] = '\0';

125

(3)

! }
! else {
! ! strncpy(h->ssid, (const char *)tag, MAX_SSID_LEN);
! ! // add on the null byte
! ! h->ssid[MAX_SSID_LEN] = '\0';
! }
!
#ifdef LOGGING
! printf("%s\n", h->ssid);
#endif
! }
!
! pthread_mutex_lock(&lock);

! node *n = create();
! memcpy(n->h, h, sizeof(harvest));
! free(h);
!
! q->head = insert_back(n, q->head);
! q->count++;
!
! pthread_mutex_unlock(&lock);
!
#ifdef LOGGING
! packets_captured++;
! printf("Packets captured thus far: %llu, \nPacket queue count (insert):
%i\n", packets_captured, q->count);
#endif
 }
 }

 // this should never be reached
 if(db_path != NULL) {
 free(db_path);
 }

 if(prechosen_iface != NULL) {
 free(prechosen_iface);
 }

 while(q->head->next != NULL) {
 node *prev = q->head;
 q->head = q->head->next;
 free(prev);
 }

 return NULL;
}

int main(int argc, const char * argv[]) {
 pthread_t store_thread;
 pthread_t capture_thread;
!
! if(getuid() != UID_ROOT) {
! ! printf("You must be root to run this program.\n");
! ! exit(1);
! }

 struct ifaddrs *ifaces;
 struct ifaddrs *cur = NULL;
 if(getifaddrs(&ifaces) == 0) {
 cur = ifaces;

126

 while(cur->ifa_next != NULL) {
#ifdef AF_LINK
 if((strcmp(cur->ifa_name, EN0) == 0) && (cur->ifa_addr->sa_family ==
AF_LINK)) {
 const struct sockaddr_dl *dlAddr = (const struct sockaddr_dl *)cur-
>ifa_addr;
 const unsigned char *base = (const unsigned char *)&dlAddr-
>sdl_data[dlAddr->sdl_nlen];
 station_id = (u_int8_t)(base + (ETH_ALEN - 1));

 break;
 }
#endif

#ifdef AF_PACKET
 if((strcmp(cur->ifa_name, EN0) == 0) && (cur->ifa_addr->sa_family ==
AF_PACKET)) {
 struct sockaddr_ll *sl = (struct sockaddr_ll*)cur->ifa_addr;
 const unsigned char *base = (const unsigned char *)sl->sll_addr;
 station_id = (u_int8_t)base[(ETH_ALEN - 1)];

 break;
 }
#endif

 cur = cur->ifa_next;
 }

 freeifaddrs(ifaces);
 }
 else {
 station_id = UNKNOWN_STATION_ID;
 }
!
! // parse any arguments passed to harvestd
! for(int i = 0; i < argc; i++) {
! ! if(strcmp(argv[i], "-f") == 0) {
! ! ! int len = strlen(argv[i + 1]);
 if(len < 1) {
 printf("You must enter a file path.\n");
 exit(1);
 }

! ! ! db_path = (char *)malloc(sizeof(char) * len + 1); /* don't
forget the NULL byte */
! ! ! strncpy(db_path, argv[i + 1], len);
 db_path[len] = '\0'; // add on the null byte

 printf("Overriding default database path: %s.\n", db_path);
! ! }
 else if(strcmp(argv[i], "-i") == 0) {
! ! ! int len = strlen(argv[i + 1]);

 if(len < 1) {
 printf("You must enter a station ID.\n");
 exit(1);
 }
 else {
 u_int8_t id = atoi(argv[i + 1]);
 if(id < MAX_SIGNED_CHAR) {
 printf("Station ID must be between 0-255.\n");
 exit(1);
 }

127

 station_id = id;
 }
! ! }
 else if(strcmp(argv[i], "-n") == 0) {
 int len = strlen(argv[i + 1]);

 if(len < 1) {
 printf("You must enter an interface name.\n");
 exit(1);
 }

 prechosen_iface = (char *)malloc(sizeof(char) * len + 1); /* don't forget
the NULL byte */
! ! ! strncpy(prechosen_iface, argv[i + 1], len);
 prechosen_iface[len] = '\0'; // add on the null byte

 printf("Using pre-chosen interface: %s.\n", prechosen_iface);
! ! }
! }

 printf("Using station ID: %i.\n", station_id);

 pthread_mutex_init(&lock, NULL);

 q = (queue *)malloc(sizeof(queue));
 q->head = NULL;
 q->head = NULL;
 q->count = 0;

 // init the capture thread and storage threads
 if(pthread_create(&capture_thread, NULL, capture_process_packets, NULL) != 0)
{
 pthread_mutex_destroy(&lock);
 printf("could not create capture thread");
 exit(1);
 }

 if(pthread_create(&store_thread, NULL, store_packets, NULL) != 0) {
 pthread_join(capture_thread, NULL);
 pthread_mutex_destroy(&lock);
 printf("could not create store thread");
 exit(1);
 }

 // wait forever for the capture thead
 pthread_join(capture_thread, NULL);
 pthread_join(store_thread, NULL);

 pthread_mutex_destroy(&lock);

 close_database(db_handle);
 free(q);

 return 0;
}

//
// list.h
// harvestd
//
// Created by David R. Stites on 9/24/12.
//

128

//

#ifndef harvest_list_h
#define harvest_list_h

#include <string.h>
#include <stdlib.h>

#include "harvest.h"

typedef struct node {
 harvest *h;
 struct node *next;
} node;

typedef struct queue {
 node *head;
 unsigned int count;
} queue;

node *create();
node *insert_back(node *newNode, node *head);
node *remove_front(node *head);

#endif

//
// list.c
// harvestd
//
// Created by David R. Stites on 9/24/12.
//
//

#include "list.h"

node *create() {
 node *n;

 n = (node *)malloc(sizeof(node));
 if(!n) {
 return NULL;
 }

 n->next = NULL;

 n->h = (harvest *)malloc(sizeof(harvest));
 memset(n->h, 0, sizeof(harvest));

! return n;
}

node *insert_back(node *newNode, node *head) {
 if(newNode == NULL) {
 return NULL;
 }

 if(head == NULL) {
 head = newNode;
 return head;
 }

 node *cur = head;

129

 while(cur->next != NULL) {
 cur = cur->next;
 }

 cur->next = newNode;

 return head;
}

node *remove_front(node *head) {
 if(head == NULL) {
 return NULL;
 }

 node *oldHead = head;
 head = head->next;

 free(oldHead->h);
 free(oldHead);

 return head;
}

//
// harvest.h
// harvestd
//
// Created by David R. Stites on 9/27/12.
//
//

#ifndef harvest_harvest_h
#define harvest_harvest_h

#define MAX_SSID_LEN 32
#define SSID_BUF_SIZE 33

#pragma pack(1)
typedef struct harvest {
 u_int8_t msg_type; /* 1 byte */
 unsigned long long timestamp; /* 4 bytes */
 u_int8_t src[6]; /* 1 bytes x 6 = 6 bytes */
 u_int8_t dst[6]; /* 1 bytes x 6 = 6 bytes */
 u_int8_t bssid[6]; /* 1 bytes x 6 = 6 bytes */
 int8_t rssi; /* 1 bytes */
 char ssid[SSID_BUF_SIZE]; /* 33 bytes (one for NULL) */
 u_int8_t stn_id; /* 1 byte */
} harvest;
#pragma pack(0)

#endif

//
// dstites_sqlite.h
// harvestd
//
// Created by David R. Stites on 9/26/12.
//
//

#ifndef harvest_dstites_sqlite_h
#define harvest_dstites_sqlite_h

130

#define CALL_SQLITE(f) \
{ \
 int i; \
 i = sqlite3_ ## f; \
 if (i != SQLITE_OK) { \
 fprintf (stderr, "%s failed with status %d: %s\n", \
 #f, i, sqlite3_errmsg (db_handle)); \
 exit (1); \
 } \
} \

#define CALL_SQLITE_EXPECT(f,x) \
{ \
 int i; \
 i = sqlite3_ ## f; \
 if (i != SQLITE_ ## x) { \
 fprintf (stderr, "%s failed with status %d: %s\n", \
 #f, i, sqlite3_errmsg (db_handle)); \
 exit (1); \
 } \
}

#endif

131

APPENDIX B: DISCOVERED SSIDS (PARTIAL LISTING)

AppleWiFi Ross aalloo-guest mobilepoint

Misty Mountain (5 GHz) TC_WL aalloo 5GHz livedoor-web

Ming's iMac PonPaNet Jun 33

Bearded Mail Academy-Guest MICHAEL-

PC_Network

Maya

AppleWiFiSecure HOME-8B28 Tehya Misr CODY8898

Misty Mountain JST A88551D4GL08ALWL

an

webOS Network BF:

32:81

attwifi JustFine PLP 2WIRE588

Adorn (5 GHz) Genius Room Home Nocimed

Apple Demo yippy 6X8XL Shop1

Air- SFO-Public KASEM&MOHAMED serengeti

haahoosal Pizza sjcfreewifi lab2

Apple Store BestBuy LAX-WiFi Air-1BFDEB

Houwen's iMac sbmc R28 Air-31C838

Zontar HomeNetFast Wael-Zone WOS

jbl-cisco iPad HOME-DBD2 JuniperWirelessNetwor

k

greentea w/redbull 5GHz ! crowne_plaza_irvine_3

8

Doghouse

dpak crib 2WIRE522 Jean Weingarten

Adorn Abby2 2WIRE008 WLESS

JBWifi 2WIRE304 ANDROMEDA RamadaMaingate

Zontar 5GHz deathstar abbylan Stafford's Network

CommuteWiFi WIFI-AIRPORT Renaissance Wireless

Guest

Metro_WiFi

330High CommuteWiFi-a RTC Public District_Guest

Danny Iacono's iMac commute_evaluation aloft_Plano Courtyard_Conf

EM50 VistaCast Guest SilverOak

Transplant BJ's Guest WiFi Dream-Public Verizon SCH-LC11

05c3 Secure

Home Depot Nicie Pier57 Nick

The Truth BELKIN54G JCP WONDERS

greentea Ritz-Carlton

Wireless

CWBH Public Casa Tua

alsoiloveyou daisy ICU95129ICU thu5att

Rooster dlink ICU95129icu covidien-guest

BeardedMail " Kitty BikramYoga

surfview Hi-Fi Extreme Casa Blanca Air-C16CB5

Pearland San.Diego.Airport.F

ree.WIFI

matthew Alpha

CoreTech SFAPT westfield cbcmilpitas

Sonny Hoàng’s iPhone BJWnet ATT896 Air-969011

Tahoe House 36 Hartford Guest COG-Hotspot2 HomeCon

133

CoreTuna Chamber7-WiFi Purple Pony ixoras-ap1

brandon-N WireSharc LUNAR horizon2

workhorse Ubiquity FamBam 247-LDAP

Pele VastConcept Verizon DROIDX 5909 dobpcj

SHGuestNet Sharks Ice MCREW6 Gulfstream Wireless

Sweethome LBL3 PurpleCheetah-guest VP-Guest

NETGEAR07 forGames maldonado1969-guest Hyatt_LostPines

elmosys 2WIRE852 MOT-1-B2 2012 ASC GSM

OpenDearborn SFO-WiFi ?? fourpoints

TL-WR841Nv5.2 Sawkins HOME-DF58 Parker Meridien

310-BIGHORN Plern's Network boddu Phoenician

KenwoodOaksGuestHouse

_ure

GlobalSuiteWireless smc-guest Phoenician Conference

WWDC2012 RadissonRochesterR

iverside

Nacho WESTIN-GUEST

flypdx vish agc HyattGuestroom

Kasia Innpublic kimpton WWLS

G12network-guest MasterLeague The Taylor Airport Aircell Broadband

Elmosys GTwpa AA MLS2012

charliebrown A BAR FREE WIFI Orpheum EnglishInn21

<Fighting Irish> chadwick-guest Guest - JW Marriott SRIVAIKUNTAM

wireless NETGEARKKD Biltmore-Wireless linksys-g

VastConceptz linkmax Conference - JW

Marriott

ResidenceInn-Guest

gogoinflight Gorringe OCI Merit-guest

134

2WIRE032 92-304-uc Renaissance Wireless

Meeting

PING1541

Caltech BeaverNet White-309 ctevents_redsky SSSS

Regal Beagle Goku's Network CBC VAIKUNTAM

Zeratul's Legacy fantismo _PRAY_PSALM_51 AG_Guest

JennyPenny houwen_n92_1 Jesus Saves-Repent and

Believe

NETGEAR_WIRELES

S

ljjiang’s iPad AndroidLibertyAP MotionMedical Sahana

ARENAINN Outer Rim CupertinoInn1 Samsandy

Roulette Comfort Inn Marina EBCWiFi Sprint MiFi4082 23F

Billy Shears AUX Wireless

Network

TimeOut Sprint MiFi4082 21E

Bania miramar2 Hostal Grau Telenav-phone access

linksys Charlotte ChicoAirport Ballys-Rooms-Cox

SCFAM2012 ChinaNet Pi TelenavSoftwareAP

05Z404734362 Tempest AirHead TelenavSoftware-

Meeting

Gyatt NET Beaker airhead g1603

Gyatt NETg londonlan SAINT JACQUES ASUS

pure lounge SappBrosTS ibahn Trybom

4dcow Lattanzio Crowne Plaza Public

Wireless

2WIRECHEESY

farkU Valery's Wi-Fi

Network

Virus Detected Armadillo Willys

135

banlieue coffeesociety Largo TREEHOUSE

wabe Travelodge Anaheim SUM_SYN_OPEN ToyotaCustomerWiFi

jNet ARG_Test swisscom garfield-guest

sleepyhouse Joelga Ahwahnee Hotel The Lounge

SMG-guest Heroes Michael Wilhelm’s

iPhone

minigourmet2

Kris and Niu Network bawb5225 Network WG phone ArmadilloWillys

BerlitzN-guest AirForce WestinGuestRooms 4416 0450

Alpine Meadows AP1 SpaceInvader CUSD_Guest MARYBETH-PC

FreeSMTP UMTS Lab flysacramento cva

beret J2-carry-315 Internet WIFI

Bania (5 GHz) sdlab pid-guest ThunderCougarFalcon

Bird

Fyzzle (5GHz) plumtree Nassau Airport Free

WiFi

FunNetwork

1spiderpigtrois 5G@Greensprings-1

12H

H Porta Fira ECBS-guest

scc_public UChi's lion VMworld2012 McCarran WiFi

RRM-Guest Delfina-GuestRoom-

WiFi

VMworld_5Ghz sca

Apple WIFI hhonors Gotterdammerung HYATT

JoshNet uchi-wireless-5G Best Buy Wireless XtremeLabs

DataValet MattPeter SH4BQ rugeriver1

lucky77 shs-guest Gotterdamerung Stanford

uNet-5GHz HappyHome Mandalay Xtreme Labs Palo Alto

136

WonderDogWireless Wireless 2012 ATA MCE Motorola

MandarinOriental cestmonwifiamoi Wotan Xtreme Labs Guest

Network

J2 EventStaff OCI Guest Pearl Harbor

tmobile hamptons6102 staff AWG-WiFi

Shaffer PandaExpress 2WIRE618 @yvrairport

demo ritkumar Blue Coat Hdb14Net

N94_PVT_Enrique_179 JKnetwork Marriott-Conference Lot104

52 Stations 2WIRE968 Marriott-

GUESTROOM

Galaxy

2WIRE155 Verizon SCH-LC11

f14c Secure

Kimpton Wormhole

Cujo391 SURFBOARD jcp Domain Hotel

Best Western SpeedStream GIOVation Felix-PC-Wireless

mansharkman (5 GHz) Linkpath2.4 JWMarriott_GUEST MarinaDelRey

2WIRE787 Choose Happy Oracle_wifi Ramada

Rii Andromeda PSAV_Event_Solutions Sprint MiFi4082 21E

Secure

LBI Shore andromeda production Dont Steal My Internets

united_club AMAT_Prod George dlink3333

Cisco52703 XiaoBai NISSAN GSO_MC

ELITE ANAG thc-corp 2WIRE137

42gNet Serene VTA Macysfreewifi

rei-guest Georgian Court

Meetings

horizon1 Boingo Hotspot

MMI-Internet Slingbox Demo FISHFREE GoogleGuest

Apple Network 0026a1 pga brettonwoods Washington Dulles

WiFi

137

wehen Sammy Max's LMM_Airport_Open_

Hotspot

JS Fields basewireless_Upper

Village186-03

ethostream42 Hotel_El_Convento

Sunny_Guest nvwrls2 VersatilePower DosAngelesdelMar

a series of tubes NETGEAR Corp2 omega

Apple Airport Network yodel Coffee Fellows Tal PPCA24

Traffic Jam nvwrls AOIC belkin54g

glfreak CoolSpot Annis Lake 17 Blue Line Public WiFi

piinknet 2WIRE178 PPTC2 SpeedStream_EXT

Living Room @Home 2WIRE864 #LG@Vo1P*Service&

2WIRE668 TechShop_San_Jose

_WiFi

MAIN Artyom

sanddollar789 telenav zeis Saggar

torretes aalloo Relievant HOME-F072

Culibri BM-Wireless PPTC3

WakaWaka UCLA_SECURE_R

ES

ATT245

138

